Data Driven Algorithm Design

Maria-Florina (Nina) Balcan Carnegie Mellon University

Analysis and Design of Algorithms

Classic algo design: solve a worst case instance.

• Easy domains, have optimal poly time algos.

E.g., sorting, shortest paths

Most domains are hard.

E.g., clustering, partitioning, subset selection, auction design, ...

Data driven algo design: use learning & data for algo design.

• Suited when repeatedly solve instances of the same algo problem.

Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

- Different methods work better in different settings.
- Large family of methods what's best in our application?

Prior work: largely empirical.

• Artificial Intelligence:

[Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, UAI 2001]

[Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]

• Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]

• Game Theory: E.g., [Likhodedov and Sandholm, 2004]

Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

- Different methods work better in different settings.
- Large family of methods what's best in our application?

Prior work: largely empirical.

Our Work: Data driven algos with formal guarantees.

- Several cases studies of widely used algo families.
- General principles: push boundaries of algo design and ML.

Related to: Hyperparameter tuning, AutoML, MetaLearning.

Program Synthesis (Sumit Gulwani's talk on Mon).

Structure of the Talk

- Data driven algo design as batch learning.
 - A formal framework.
 - Case studies: clustering, partitioning pbs, auction pbs.
 - General sample complexity theorem.
- Data driven algo design as online learning.

Example: Clustering Problems

Clustering: Given a set objects organize then into natural groups.

• E.g., cluster news articles, or web pages, or search results by topic.

• Or, cluster customers according to purchase history.

• Or, cluster images by who is in them.

Often need do solve such problems repeatedly.

• E.g., clustering news articles (Google news).

Example: Clustering Problems

Clustering: Given a set objects organize then into natural groups.

Objective based clustering

k-means <u>Input</u>: Set of objects S, d <u>Output</u>: centers {c₁, c₂, ..., c_k}

To minimize $\sum_{p} \min_{i} d^2(p, c_i)$

k-median: $\min \sum_{p} \min d(p, c_i)$.

k-center/facility location: minimize the maximum radius.

• Finding OPT is NP-hard, so no universal efficient algo that works on all domains.

Goal: given family of algos \mathbf{F} , sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Goal: given family of algos \mathbf{F} , sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Approach: ERM, find \widehat{A} near optimal algorithm over the set of samples.

Key Question: Will \widehat{A} do well on future instances?

Sample Complexity: How large should our sample of typical instances be in order to guarantee good performance on new instances?

Goal: given family of algos \mathbf{F} , sample of typical instances from domain (unknown distr. \mathbf{D}), find algo that performs well on new instances from \mathbf{D} .

Approach: ERM, find $\widehat{\mathbf{A}}$ near optimal algorithm over the set of samples.

Key tools from learning theory

- Uniform convergence: for any algo in F, average performance over samples "close" to its expected performance.
 - Imply that $\widehat{\mathbf{A}}$ has high expected performance.
 - $N = O(\dim(\mathbf{F}) / \epsilon^2)$ instances suffice for ϵ -close.

Goal: given family of algos F, sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Key tools from learning theory

 $N = O(\dim(\mathbf{F}) / \epsilon^2)$ instances suffice for ϵ -close.

 $\dim(F)$ (e.g. pseudo-dimension): ability of fns in F to fit complex patterns

More complex patterns can fit, more samples needed for UC and generalization

Goal: given family of algos \mathbf{F} , sample of typical instances from domain (unknown distr. D), find algo that performs well on new instances from D.

Key tools from learning theory

 $N = O(\dim(\mathbf{F}) / \epsilon^2)$ instances suffice for ϵ -close.

dim(F) (e.g. pseudo-dimension): ability of fns in F to fit complex patterns

Statistical Learning Approach to AAD

Challenge: "nearby" algos can have drastically different behavior.

Challenge: design a computationally efficient meta-algorithm.

Prior Work: [Gupta-Roughgarden, ITCS'16 &SICOMP'17] proposed model; analyzed greedy algos for subset selection pbs (knapsack & independent set).

Our results: New algorithm classes for a wide range of problems.

Clustering: Parametrized Linkage

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

[Balcan-Dick-Lang, 2019]

Parametrized Lloyd's

[Balcan-Dick-White, NeurIPS 2018]

Alignment pbs (e.g., string alignment): parametrized dynamic prog.

[Balcan-DeBlasio-Dick-Kingsford-Sandholm-Vitercik, 2019]

Our results: New algo classes applicable for a wide range of pbs.

- Partitioning pbs via IQPs: SDP + Rounding
 [Balcan-Nagarajan-Vitercik-White, COLT 2017]
 E.g., Max-Cut,
 Max-2SAT, Correlation Clustering
- Automated mechanism design

[Balcan-Sandholm-Vitercik, EC 2018]

Generalized parametrized VCG auctions, posted prices, lotteries.

Our results: New algo classes applicable for a wide range of pbs.

• Branch and Bound Techniques for solving MIPs

[Balcan-Dick-Sandholm-Vitercik, ICML'18]

Max $c \cdot x$ s.t. Ax = b $x_i \in \{0,1\}, \forall i \in I$

Clustering Problems

Clustering: Given a set objects (news articles, customer surveys, web pages, ...) organize then into natural groups.

Objective based clustering

k-means <u>Input</u>: Set of objects S, d <u>Output</u>: centers {c₁, c₂, ..., c_k}

To minimize $\sum_{p} \min_{i} d^2(p, c_i)$

Or minimize distance to ground-truth

Family of poly time 2-stage algorithms:

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

- 1. Greedy linkage-based algo to get hierarchy (tree) of clusters.
- 2. Fixed algo (e.g., DP or last k-merges) to select a good pruning.

- 1. Linkage-based algo to get a hierarchy.
- 2. Post-processing to identify a good pruning.

Both steps can be done efficiently.

Linkage Procedures for Hierarchical Clustering

- Start with every point in its own cluster.
- Repeatedly merge the "closest" two clusters.

Different defs of "closest" give different algorithms.

Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects. d(x,y) - distance between x and y

E.g., # keywords in common, edit distance, etc

- Single linkage: $dist(A, B) = \min_{x \in A, x' \in B} dist(x, x')$
- Complete linkage: $dist(A, B) = \max_{x \in A, x' \in B} dist(x, x')$
- Parametrized family, α -weighted linkage:

 $dist_{\alpha}(A, B) = (1 - \alpha) \min_{x \in A, x' \in B} d(x, x') + \alpha \max_{x \in A, x' \in B} d(x, x')$

Our Results: α -weighted linkage + Post-processing

 Pseudo-dimension is O(log n), so small sample complexity.

• Given sample S, find best algo from this family in poly time.

Key Technical Challenge: small changes to the parameters of the algo can lead to radical changes in the tree or clustering produced.

Problem: a single change to an early decision by the linkage algo, can snowball and produce large changes later on.

Claim: Pseudo-dim of α -weighted linkage + Post-process is O(log n).

Key fact: If we fix a clustering instance of n pts and vary α , at most $O(n^8)$ switching points where behavior on that instance changes.

So, the cost function is piecewise-constant with at most $O(n^8)$ pieces.

Claim: Pseudo-dim of α -weighted linkage + Post-process is O(log n).

Key fact: If we fix a clustering instance of n pts and vary α , at most $O(n^8)$ switching points where behavior on that instance changes.

- Depends on which of $\alpha d(p,q) + (1-\alpha)d(p',q')$ or $\alpha d(r,s) + (1-\alpha)d(r',s')$ is smaller.
- An interval boundary an equality for 8 points, so $O(n^8)$ interval boundaries.

Claim: Pseudo-dim of α -weighted linkage + Post-process is O(log n).

Key idea: For m clustering instances of n points, $O(mn^8)$ patterns.

- Pseudo-dim largest m for which 2^m patterns achievable.
- So, solve for $2^{m} \leq m n^{8}$. Pseudo-dimension is O(log n).

Claim: Pseudo-dim of α -weighted linkage + Post-process is O(log n).

For $N = O(\log n / \epsilon^2)$, w.h.p. expected performance cost of best α over the sample is ϵ -close to optimal over the distribution

Claim: Given sample 5, can find best algo from this family in poly time.

- Solve for all α intervals over the sample. $\alpha \in [0,1]$
- Find α interval with smallest empirical cost.

Learning Both Distance and Linkage Criteria

[Balcan-Dick-Lang, 2019]

- Often different types of distance metrics.
 - Captioned images, d_0 image info, d_1 caption info.

• Handwritten images: d_0 pixel info (CNN embeddings), d_1 stroke info.

Character Image Stroke Data

Family of Metrics: Given d_0 and d_1 , define

 $d_{\beta}(\mathbf{x},\mathbf{x}') = (1-\beta) \cdot d_0(\mathbf{x},\mathbf{x}') + \beta \cdot d_1(\mathbf{x},\mathbf{x}')$

Parametrized (α, β) -weighted linkage $(\alpha \text{ interpolation between single and } complete linkage and <math>\beta$ interpolation between two metrics):

 $dist_{\alpha}(A, B; d_{\beta}) = (1 - \alpha) \min_{x \in A, x' \in B} d_{\beta}(x, x') + \alpha \max_{x \in A, x' \in B} d_{\beta}(x, x')$

Learning Both Distance and Linkage Criteria

Claim: Pseudo-dim. of (α, β) -weighted linkage is O(log n).

Key fact: Fix instance of n pts; vary α , β , partition space with $O(n^8)$ linear, quadratic equations s.t. within each region, same cluster tree.

Learning Distance for Clustering Subsets of Omniglot

- Written characters from 50 alphabets, each character 20 examples. [Lake, Salakhutdinov, Tenenbaum '15]
- Image & stroke (trajectory of pen)

Instance Distribution

- Pick random alphabet. Pick 5 to 10 characters.
- Use all 20 examples of chosen characters (100 200 points)
- Target clusters are characters.
- d_0 uses character images. Cosine distance between CNN feature embeddings CNN trained on MNIST.
- d_1 Hand-designed Stroke.

Average distance from points on each stroke to nearest point on other stroke.

古出远

Clustering Subsets of Omniglot

Partitioning Problems via IQPs

IQP formulation Max $\mathbf{x}^{T}A\mathbf{x} = \sum_{i,j} a_{i,j} x_i x_j$ s.t. $\mathbf{x} \in \{-1,1\}^n$

Many of these pbs are NP-hard.

E.g., **Max cut**: partition a graph into two pieces to maximize weight of edges crossing the partition.

Parametrized family of rounding procedures

IQP formulation Max $\mathbf{x}^{T}A\mathbf{x} = \sum_{i,j} a_{i,j} x_i x_j$ s.t. $\mathbf{x} \in \{-1,1\}^n$

Algorithmic Approach: SDP + Rounding

1. SDP relaxation:

Associate each binary variable x_i with a vector \mathbf{u}_i .

Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is O(log n), so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic in $\frac{1}{s}$ with *n* boundaries. IQP objective value *Z*

Given sample S, can find best algo from this family in poly time.

Data-driven Mechanism Design

• Mechanism design for revenue maximization.

[Balcan-Sandholm-Vitercik, EC'18]

- Pseudo-dim of {revenue_M: $M \in M$ } for multi-item multi-buyer settings.
 - Many families: second-price auctions with reserves, posted pricing, two-part tariffs, parametrized VCG auctions, etc.
- Key insight: dual function sufficiently structured.
 - For a fixed set of bids, revenue is piecewise linear fnc of parameters.
 <u>2nd-price auction with reserve</u>
 <u>Posted price mechanisms</u>

General Sample Complexity via Dual Classes

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, 2019]

High level learning theory bit

- Want to prove that for all algorithm parameters α : $\frac{1}{|\mathcal{S}|} \sum_{I \in \mathcal{S}} \operatorname{cost}_{\alpha}(I) \text{ close to } \mathbb{E}[\operatorname{cost}_{\alpha}(I)].$
- Function class whose complexity want to control: $\{cost_{\alpha}: parameter \alpha\}$.
- Proof takes advantage of structure of dual class $\{cost_I: instances I\}$.

Structure of the Talk

- Data driven algo design as batch learning.
 - A formal framework.
 - Case studies: clustering, partitioning pbs, auction problems.
- Data driven algo design via online learning.

Online Algorithm Selection

- So far, batch setting: collection of typical instances given upfront.
 - [Balcan-Dick-Vitercik, FOCS 2018], [Balcan-Dick-Pedgen, 2019] online alg. selection.
- Challenge: scoring fns non-convex, with lots of discontinuities.

Cannot use known techniques.

- Identify general properties (piecewise Lipschitz fns with dispersed discontinuities) sufficient for strong bounds.
 - Show these properties hold for many alg. selection pbs.

Online Algorithm Selection via Online Optimization

Online optimization of general piecewise Lipschitz functions

On each round $t \in \{1, ..., T\}$:

- 1. Online learning algo chooses a parameter ρ_t
- 2. Adversary selects a piecewise Lipschitz function $u_t: \mathcal{C} \rightarrow [0, H]$

• corresponds to some pb instance and its induced scoring fnc Payoff: score of the parameter we selected $u_t(\rho_t)$.

3. Get feedback: Full information: observe the function $u_t(\cdot)$ Bandit feedback: observe only payoff $u_t(\rho_t)$.

Dispersion, Sufficient Condition for No-Regret

 $\{u_1(\cdot), ..., u_T(\cdot)\}\$ is (w, k)-dispersed if any ball of radius w contains boundaries for at most k of the u_i .

Dispersion, Sufficient Condition for No-Regret

Full info: exponentially weighted forecaster [Cesa-Bianchi-Lugosi 2006]

On each round $t \in \{1, ..., T\}$:

• Sample a vector ρ_t from distr. p_t :

$$p_t(\boldsymbol{\rho}) \propto \exp\left(\lambda \sum_{s=1}^{t-1} u_s(\boldsymbol{\rho})\right)$$

Disperse fns, regret $\tilde{O}(\sqrt{Td} \text{ fnc of problem}))$.

Summary and Discussion

Strong performance guarantees for data driven algorithm selection for combinatorial problems.

Revenue

Provide and exploit structural properties of dual class for good sample complexity and regret bounds.

•

• Machine learning: techniques of independent interest beyond algorithm selection.

Many Exciting Open Directions

- Analyze other widely used classes of algorithmic paradigms.
 - Branch and Bound Techniques for MIPs [Balcan-Dick-Sandholm-Vitercik, ICML'18]
 - Parametrized Lloyd's methods [Balcan-Dick-White, NeurIPS'18]
 - Other algorithmic paradigms relevant to data-mining pbs.
- Other learning models (e.g., one shot, domain adaptation, reinforcement learning).
- Explore connections to program synthesis; automated algo design.
- Connections to Hyperparameter tuning, AutoML, Meta-learning.

Use our insights for pbs studied in these settings (e.g., tuning hyper-parameters in deep nets)

