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Abstract. Bayesian global-local shrinkage estimation with the gener-
alized horseshoe prior represents the state-of-the-art for Gaussian re-
gression models. The extension to non-Gaussian data, such as binary
or Student-t regression, is usually done by exploiting a scale-mixture-of-
normals approach. However, many standard distributions, such as the
gamma and the Poisson, do not admit such a representation. We con-
tribute two extensions to global-local shrinkage methodology. The first
is an adaption of recent auxiliary gradient based-sampling schemes to
the global-local shrinkage framework, which yields simple algorithms for
sampling from generalized linear models. We also introduce two new sam-
plers for the hyperparameters in the generalized horseshoe model, one
based on an inverse-gamma mixture of inverse-gamma distributions, and
the second a rejection sampler. Results show that these new samplers
are highly competitive with the no U-turn sampler for small numbers of
predictors, and potentially perform better for larger numbers of predic-
tors. Results for hyperparameter sampling show our new inverse-gamma
inverse-gamma based sampling scheme outperforms the standard sam-
pler based on a gamma mixture of gamma distributions.

Keywords: Bayesian regression, Markov Chain Monte Carlo Sampling,
Horseshoe Regression, Shrinkage

1 Introduction

The introduction of the horseshoe prior [5], and more generally the idea of
global-local shrinkage hierarchies [16], has sparked a period of interest in heavy
tailed prior distributions for coefficients in linear regression models. The Bayesian
global-local shrinkage priors represent the current state-of-the-art for Gaussian
linear regression models and encompass a large number of well known Bayesian
shrinkage techniques, including the Bayesian ridge, the Bayesian lasso [13], the
horseshoe prior, the horseshoe+ [2] and the Dirichlet-Laplace [4] prior. Let
y = (y1, . . . , yn) denote the vector of n measurements of a target (depen-
dent) variable of interest, x̄i = (xi,1, . . . , xi,p) denote the vector of of predic-
tors (explanatory variables, covariates) associated with each target yi, and let
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X = (x̄1, . . . , x̄n)T denote the n×p matrix of explanatory variables. The global-
local shrinkage (GLS) hierarchy for Gaussian linear models is given by:

y |β, β0, σ2 ∼ N(Xβ + β01n, σ
2)

β0 ∼ (1)dβ0

σ2 ∼ σ−2dσ2

βj |λj , σ, τ ∼ N(0, λ2jτ
2σ2),

λj ∼ π(λj)dλj ,

τ ∼ C+(0, 1) (1)

where j = 1, . . . , p, β = (β1, . . . , βp) is the vector of model coefficients, β0 is
the intercept, σ2 is the noise variance, N(a, b) is the normal distribution with
mean a and variance b and C+(0, c) denotes a half-Cauchy distribution with
scale c. In hierarchy (1), the hyperparameters λ1, . . . , λp are the local shrinkage
parameters that induce shrinkage only on their corresponding coefficients; by
selecting a specific prior distribution π(λj) one can represent most standard
Bayesian shrinkage procedures within this framework. The hyperparameter τ is
the global shrinkage parameter that controls the overall level of shrinkage and
ties the p regression coefficients together; conditioning on σ2 ensures that the
shrinkage induced on the coefficients is not affected by scale changes of our data.

The joint posterior distribution of a GLS hierarchy is in general intractable,
so it usual to instead explore the posterior distribution by sampling. A standard
approach is a Gibbs sampling procedure [9] which repeatedly iterates:

1. sample the coefficients from p(β |β0, σ2,λ, τ,y);

2. sample the remaining model parameters from p(β0, σ
2 |β,λ, τ,y);

3. sample the shrinkage hyperparameters from p(λ, τ |β, σ2,y).

A strength of the GLS hierarchy is that in this Gibbs sampling framework the
sampling algorithms for the hyperparameters are independent from the sampling
algorithm for the coefficients. This means that as long as we have algorithms for
sampling the coefficients given a normal prior distribution, and an algorithm
for sampling the hyperparameters, we can mix and match choices of shrinkage
priors with choices for likelihoods with no additional implementation details.

Building on this idea, the aim of this article is to explore two extensions
to global-local shrinkage methodology: (i) we propose to adapt recent gradient-
based sampling algorithms [20] to provide simple sampling procedures for a
wide-range of non-Gaussian data, and (ii) we propose two new samplers for the
local shrinkage hyperparameters λj under the generalized horseshoe estimator.

1.1 Bayesian Generalized Linear Models

One of the great successes of linear models is the ease in which they may be ex-
tended to handle data that is not typically modelled using a normal distribution
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(e.g., categorical or count data) via the framework of generalised linear mod-
els (GLMs) introduced by Nelder and Wedderburn [11]. The GLM framework
begins by defining

ηi = x̄T

i β + β0

as the linear predictor; a GLM then models the conditional mean and variance
of the target yi by a suitable transformation of this linear predictor, i.e.,

E [yi | x̄i] = f−1(ηi) ≡ µi,
Var [yi | x̄i] = σ2 v(ηi),

where σ2 is now a dispersion parameter, and f(µi) = ηi is referred to as the
link function, as it links the linear predictor ηi to the conditional mean µi.
This approach allows yi to follow many standard distributions, and with careful
choice of f(·) the resulting GLM retains much of the computational efficiency
and statistical interpretability that characterises Gaussian linear models.

The usual fashion in which the global-local hierarchy (1) is extended to non-
Gaussian data is through a scale mixture of normals (SMN) representation of
the desired distribution. In particular, we rewrite the data model as

yi |β, β0, ωj , σ2 ∼ N(x̄T

i β + β0, σ
2ω2

j ),

ωj ∼ π(ωj)dωj .

In this approach, the data are modelled as arising from n heteroskedastic nor-
mal distributions, with an additional latent scale variable ωi associated with
each data point yi. The choice of the mixing density π(ωj) determines the final
distribution of yj . The particular advantage of this data augmentation approach
is that it preserves the conditional conjugacy between the likelihood and the
normal prior distribution for βj . Therefore, efficient sampling algorithms such as
those of Rue [18](for p < n) and Bhattarcharya [3] (for p > n) can be employed
in a Gibbs framework to generate posterior samples for the coefficients. The
SMN approach has successfully been used to represent the Laplace, Student-t,
logistic and negative binomial distribution [17, 10].

However, not all distributions utilised in standard generalized linear mod-
elling have known or convenient SMN representations; examples include the Pois-
son, gamma, Weibull and inverse-Gaussian distributions. In such cases, one must
usually resort to alternative sampling techniques. One of the earliest approaches
was utilisation of adaptive rejection sampling to implement one-at-a-time sam-
pling of the coefficients. Such an approach is potentially slow and can result
in a chain that mixes poorly, particularly if the predictors are correlated. More
recent sampling techniques that can be utilised to handle Bayesian generalized
linear models include the Hamiltonian MCMC no U-turn sampler (NUTS)[8]
implemented in the Stan tool; generalized elliptical slice sampling [12]; and the
Metropolis adjusted preconditioned Crank-Nicolson (pCNL) Langevin-based ap-
proach [6].
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1.2 Generalized Horseshoe Priors

A particular important prior is the so-called generalized horseshoe (GHS, also
known as the generalized beta mixture of Gaussians and the inverse-gamma-
gamma prior). The generalized horseshoe [1] places a beta prior distribution
over the coefficient of shrinkage, i.e., λ2j (1+λ2j )

−1 ∼ Beta(a, b). This induces the
following distribution over λj :

π(λj | a, b) =
2λ2a−1j (1 + λ2j )

−a−b

B(a, b)
. (2)

The well known horseshoe arises if we set a = b = 1/2; in this case the beta
distribution has a ‘U’-shape from which the horseshoe prior obtains its distinctive
name, and (2) reduces to the unit half-Cauchy. To gain an understanding of the
effect that the hyperparameters a and b have on inference we can examine the
corresponding marginal prior distribution over βj :

π(βj | a, b) =

∫ ∞
0

φ(β/λj)/λjπ(λj | a, b)dλj

where φ(·) denotes the standard normal density function. Appealing to Propo-
sition 1 and Thereoms 2 and 3 from [19], we have for a < 1/2

π(βj | a, b) = O(|β|−1+2a)

as |β| → 0, and for all b > 0

π(βj | a, b) = O
(
|β|−1−2b

)
as |β| → ∞. Therefore, the hyperparameter a controls the degree to which prior
probability is concentrated around β = 0; smaller values indicate an a priori
belief in great underlying sparsity of the coefficients vector. The hyperparameter
b controls the rate at which the tail of the marginal prior decays; smaller values
result in a slower decay, which indicates an a priori belief that some of the
coefficients may be substantially greater in magnitude than others.

Sampling generalized horseshoe hyperparameters Most MCMC imple-
mentations of (a variant of) the generalized horseshoe are based on Gibbs sam-
pling. For the particular case of the horseshoe (i.e., a = b = 1/2) there exist
a number of approaches to sampling the conditional posterior p(λj |βj , τ, σ2).
These include slice sampling [15], an inverse-gamma inverse-gamma scale mix-
ture representation [10] and a gamma-gamma scale mixture representation [1].
Of these methods, only the gamma-gamma mixture currently handles the gen-
eralized horseshoe; it utilises the fact that if

x2 | c ∼ Ga(a, 1/c), and c ∼ Ga(b, 1)
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then x follows the distribution (2), where Ga(a, c) denotes a gamma distribution
with shape a and scale c. Introducing a set of latent variables ν1, . . . , νp, this
augmentation leads to the full conditionals

λ2j | · · · ∼ GIG(a− 1/2, 2νj , 2mj) and νj | · · · ∼ Ga
(
a+ b, (1 + λ2j )

−1) , (3)

where mj = β2
j /(2σ

2τ2) and GIG denotes a generalized inverse Gaussian distri-
bution. Implementation within a Gibbs framework therefore requires sampling
from the GIG distribution, which is potentially troublesome. Algorithms for
generating GIG random variates are not distributed by default in packages such
as MATLAB and R, and the best implementations are slower than generating
random variates from standard distributions such as the gamma.

1.3 Our contributions

In Section 2 of this paper, we adapt the recently proposed class of auxiliary
gradient-based sampling algorithms [20] to the hierarchy (1). While these algo-
rithms were designed for Gaussian process regression, they are perfectly posi-
tioned for application to GLMs and global-local shrinkage hierarchies. In Sec-
tion 3 of this paper we present two new samplers for λj in the case of the GHS.
One is a generalization of the inverse-gamma inverse-gamma approach proposed
in [10]; the other is a new rejection sampler that exploits the log-concavity of
the conditional distribution of log λj .

Results in Section 4 demonstrate that despite their simplicity, the new gradi-
ent based sampling algorithms are competitive with alternative non-specialized
sampling algorithms in terms of effective samples per second, and can potentially
outperform them. Experimental results also show that the new inverse-gamma
inverse-gamma sampler for the generalized horseshoe leads to a Gibbs simpler
that is frequently more efficient in terms of effective samples per second than
(3), while remaining substantially simpler in terms of implementation.

2 Gradient-based samplers for Bayesian GLMs

We propose to utilise the recently developed auxiliary gradient-based sampling
algorithms [20]. These algorithms work by first augmenting the target density
with auxiliary random variables, and using this in conjunction with a first-order
Taylor series expansion of the likelihood and a marginalisation step to build a
Metropolis-Hastings proposal density that is both likelihood and prior informed.
Specifically, they were designed to target densities of the form

p(β) ∝ exp(f(β);β0, σ
2)N(β |0,C)

where f(β, β0, σ
2) denotes the log-likelihood and C denotes the prior covariance

matrix for the coefficients β. The posterior distribution for the coefficients β of
a generalized linear model with global-local shrinkage priors, conditional on the
shrinkage hyperparameters λ and τ , directly matches this class of problems. This
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facilitates application of these auxilary gradient-based samplers within the usual
Gibbs sampling framework. Furthermore, in the case of a GLM with a standard
link function, the log-likelihood f(β) is a convex function of the coefficients β.
As our starting point we consider the general pre-conditioned marginal gradient
sampler (eq. (8) in [20]), which uses as a proposal

β̄ |β ∼ N
(

A

(
5f(β) +

(
2

δ

)
S−1βT

)
,

(
2

δ

)
AS−1A + A

)
(4)

where δ > 0 is the MH step-size, S is the pre-conditioning matrix, 5f(β) =
(∂f(β, β0, σ

2)/∂β) denotes the gradient, and

A =

(
C−1 +

(
2

δ

)
S−1

)−1
.

The step-size δ should be chosen such that 50%− 60% of samplers are accepted.
We discuss a robust fully automatic method for doing this in Section 2.4.

2.1 Algorithm 1: mGrad-1

The first variant of the algorithm we will consider uses S = Ip. In the case of
the global-local shrinkage hierarchy (1) the prior covariance matrix C is simply
a diagonal matrix with entries

Cj,j = τ2σ2λ2j , j = 1, . . . , p.

Combined with the choice S = Ip, the proposal (4) and the Metropolis-Hastings
acceptance step dramatically simplify. We call this algorithm ‘mGrad-1’, as it
uses only first order information. The mGrad-1 algorithm works as follows:

1. Generate proposals for coefficients using

β̄j ∼ N
(
Cj,j(δ [5f(β)]j + 2βj)

2Cj,j + δ
,
δ Cj,j(4Cj,j + δ)

(2Cj,j + δ)2

)
2. Generate u ∼ U(0, 1), and accept the new proposal if

u < exp
(
f(β̄, β0, σ

2)− f(β, β0, σ
2) + h1(β, β̄)− h1(β̄,β)

)
,

h1(β, β̄) =

p∑
j=1

(
βj −

Cj,j(4β̄j + δ [5f(β̄)]j)

2(2Cj,j + δ)

)(
2Cj,j + δ

4Cj,j + δ

)
[5f(β̄)]j

Due to the nature of the global-local shrinkage hierarchy, the mGrad-1 algorithm
has a total computational complexity of only order O(pn) for a GLM. This gives
it potential for application to large p regression problems.
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2.2 Algorithm 2: mGrad-2

A potential problem with the mGrad-1 algorithm is that it only utilises first
order likelihood information when generating the proposal; therefore, potential
exists to improve mixing in the face of correlation between predictors by util-
ising second-order information. A second-order Taylor series expansion method
is proposed in the supplementary material of [20], but was found to perform
poorly, and is slow to implement as the proposal distribution depends on state-
dependent second-order information. Given the nature of GLMs, we instead
propose to set S = XTX, i.e., to use the correlation matrix of the predictors
as the preconditioner. This keeps the covariance of the proposal independent
of the state and allows for pre-computation of S−1. We call this the ‘mGrad-2’
algorithm, as it utilises second-order information. The computational effort of
mGrad-2 is O(p3), which can be substantially higher than the computational
complexity of mGrad-1.

2.3 Sampling the intercept

The mGrad-1 and mGrad-2 algorithms provide us with a way to sample the
coefficients β. We observed that using a single MH step for both β0 and β led
to reduced mixing, so we instead sample the intercept separately, using a simple
proposal that does not depend on a step size parameter. To sample β0 for a
GLM we use the following procedure:

1. Generate a proposal from

β̄0 |β0 ∼ N
(
β,

2.5

H(β0)

)
where H(β0) is the second-derivative of the negative log-likelihood with re-
spect to β0.

2. Generate u ∼ U(0, 1) and accept β̄0 if u < exp(f(β, β̄0, σ
2)− f(β, β0), σ2).

We find this choice leads to acceptance rates in the range 50% − 60% for all
experiments we considered.

2.4 Tuning the step size δ

Both the mGrad-1 and mGrad-2 algorithms are Metropolis-Hastings based ap-
proaches and require the selection of an appropriate step-size. For the base algo-
rithm from which these methods are derived it is recommended that the optimal
step-size δ should yield an acceptance rate in the range of 50%−60%. The step-
size that achieves this rate will depend crucially on the particular problem, so it
must be chosen adaptively. During the initial burn-in period we use the following
procedure to estimate an appropriate value for δ.

We divide the burn-in period into windows of size w; then, every w iterations
we record the step-size δ used in window j as δj , and the observed acceptance
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rate for the window as pj . We first find values of δ such that our algorithm never
accepts samples, and accepts all samples; call our initial guesses at these two
quantities δmax and δmin, respectively. We continually increase δ by a factor of
k > 0 every window, starting from δ = δmax, until we observe an acceptance rate
of zero and update our value of δmax. We then continually decrease δ by a factor
of k every window, starting from δ = δmin, until we observe an acceptance rate
of one and update our value of δmin.

Once this is done we set δ ← (δminδmax)1/2, and begin ‘probing’ to learn
the relationship between δ and the acceptance probability. For every window
j thereafter, we fit a logistic regression of (log δ1, . . . , log δj) to the acceptance
probabilities (p1, . . . , pj); call the fitted slope α̂1 and intercept α̂0. We then
update the step-size for the next window by first generating u ∼ U(0.45, 0.65),
and then setting δ = d(u, α̂0, α̂1) where

d(u, α0, α1) = exp

[
− 1

α1

(
− log

(
1

1/u− 1

)
+ α0

)]
.

solves the equation

log

(
u

1− u

)
= α1 log δ + α0

for δ. Once the burn-in phase is complete, we choose the final step-size as δ =
d(0.55, α̂0, α̂1). In this way we are using the estimated relationship between the
step-size and acceptance probability to select an appropriate value for δ. In
our implementation we took w = 75, δmax = 100, δmin = 10−7 and k = 10,
though our experiments show the algorithm is almost completely insensitive to
the particular values chosen. In all cases we observed that a burn-in period of
5, 000 samples usually provided an estimate of δ that achieved an acceptance
rate between 0.5 and 0.6 for the remaining samples.

2.5 Implementation details

Implementation of the mGrad-1 and mGrad-2 algorithms require only knowledge
of the log-likelihood and the gradient of the log-likelihood. For convenience, these
quantities are presented in Table 1 for a number of distributions frequently
used in GLMs. Both algorithms require computation of the likelihood for the
acceptance step. By careful implementation the number of computations can be
reduced to one additional computation per sample being simulated.

While the computation of the likelihood is not required by the SMN tech-
nique, it is common to compute a diagnostic statistic such as the widely applica-
ble information criterion (WAIC) from MCMC output, for which computation of
the likelihood is required for every sample. In this case, our samplers effectively
provide the likelihood information ‘for free’ which improves their competitiveness
in comparison to SMN approaches.
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Log-likelihood, f(β, β0, σ
2) [5f(β)]j σ2v(µi)

Normal − 1

2σ2

n∑
i=1

e2i
1

σ2

n∑
i=1

eiXi,j σ2

Binomial

n∑
i=1

yi logµi + (1− yi) log(1− µi)

n∑
i=1

eiXi,j µi(1− µi)

Poisson

[
n∑

i=1

yiηi − µi

]
n∑

i=1

eiXi,j µi

Geometric

[
n∑

i=1

ηiyi − (yi + 1) log(µi + 1)

]
n∑

i=1

(
yi −

µi(yi + 1)

µi + 1

)
Xi,j µ(µi + 1)

Gamma − 1

κ

n∑
i=1

[
logµi +

yi
µi

]
1

κ

n∑
i=1

(
yi
µi
− 1

)
Xi,j κµ2

i

Inverse-Gaussian − 1

2ξ

n∑
i=1

e2i
µ2
i yi

1

ξ

n∑
i=1

(
ei
µ2
i yi

)
Xi,j ξµ3

i

Table 1. Log-likelihoods (up to constants independent of β) and gradients for com-
monly used target distributions. The quantity ηi = x̄T

i β + β0 denotes the linear pre-
dictor for sample yi, and ei = yi − µi. The normal distribution uses the identity link
µi = ηi; the binomial uses the logit link µi = (1 + exp(−ηi))−1; the remaining dis-
tributions use the log-link µi = exp(ηi). All distributions are parameterised so that
E [yi] = µi. The final column identifies the dispersion parameter.

3 Two new samplers for the generalized horseshoe

In this section we discuss two new sampling schemes for the shrinkage hyperpa-
rameters in the generalized horseshoe hierarchy (1). More specifically, we develop
two samplers to target the density

p(z |m, p, a, b) ∝ z2a−p−1(1 + z2)−a−be−m/z
2

(5)

This density generalizes the conditional distributions for the shrinkage hyper-
parameters λj and τ in the GHS hierarchy (1); for example, the conditional
distribution for a local shrinkage hyperparameter λj is

p(z = λj |β2
j /(2τ

2σ2), 1, a, b)

and for the global shrinkage hyperparameter τ is

p

z = τ |
(

1

2σ2

) p∑
j=1

β2
j

λ2j
, p, a, b

 .
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We develop two approaches to sample from (5). We provide an inverse gamma
mixture of inverse gamma (IGIG) distributions as an alternative to the gamma-
gamma (GG) sampler. We also detail a reasonable straightforward rejection
sampler that exploits the log-concavity of the density (5) under the transfor-
mation ξ = log z. In contrast to the the GG and IGIG samplers, the rejection
sampler simulates uncorrelated random draws. It is also easily adapted to sample
from a truncated form of (5), which is of potential interest in light of the results
presented in [14].

3.1 Inverse Gamma-Inverse Gamma Sampler

The following proposition generalizes the inverse gamma-inverse gamma repre-
sentation of the half-Cauchy density utilised in [10]. This allows us to build a
Gibbs sampler for the generalized horseshoe estimator.

Proposition 1. Let x2 | ν, b ∼ IG(b, 1/ν) and ν | a ∼ IG(a, 1). Then

p(x) ∝ x2a−1(1 + x2)−a−b.

The proof is a straightforward application of integration by substitution. Using
Proposition 1, we can build a sampler for the density (5) in the case that a > 0,
b > 0. Introduce the auxiliary variable ν; the Gibbs sampler then iterates:

1. First sample

z2 ∼ IG

(
p

2
+ b,m+

1

ν

)
.

2. Then sample the auxilliary variable

ν ∼ IG

(
a+ b, 1 +

1

z2

)
.

Marginally, the random variable z will follow the distribution (5). In contrast
to the gamma-gamma sampler discussed in Section 1.2, the inverse gamma-
inverse gamma sampler only requires samples from inverse gamma distributions,
rather than the substantially more complex generalised inverse Gaussian dis-
tribution needed by the gamma-gamma hierarchy. This makes implementation
substantially more straightforward.

3.2 Rejection Sampling

The GG and IGIG samplers all have a one-hundred percent acceptance rate,
but suffer from autocorrelation due to their reliance on auxiliary variables. An
alternative to this approach is rejection sampling, in which we trade a reduced
acceptance rate for the removal of autocorrelation in the samples. As a quick
refresher, a rejection sampler for a target density p(x) works by first drawing
a sample from a proposal distribution q(x), and then accepting this sample
if p(x)/q(x) > u, where u ∼ U(0, 1). The proposal distribution must satisfy
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q(x) ≥ p(x) for all x (i.e., the proposal must upper-bound the target density),
and ideally, must be straightforward to generate samples from. The closer q(x)
is to p(x), the higher the rate of acceptance.

An efficient rejection sampler for λ can be devised by noting that if λ follows
the conditional distribution (5), then the probability density for the transformed
variable ξ = log λ (i.e., we are sampling the logarithm of the hyperparameters)
is

p(ξ |m, p, a, b) ∝ e−e
−2ξme−ξ(p−2a)(1 + e2ξ)−a−b. (6)

It is straightforward to verify that the density (6) is log-concave, and that
− log p(ξ |m, p, a, b) � ξ as ξ → ∞. We therefore use a proposal density built
by sandwiching a uniform density between two appropriately chosen exponential
distributions, as this is guaranteed to bound the density (6) from above [7]. The
mode of the density (6) is given by

ξ′ =
1

2

[
log
(

2(a+m)− p+
√

8m(2b+ p) + (p− 2a− 2m)2
)
− log(4b+ 2p)

]
.

We place the uniform density on the interval (L,R) which is chosen such that
L < ξ′ < R, and then place the two exponential distributions on either side of
the mode; to find the break-points L and R for the three components, first define

l(ξ) = − log p(ξ |m, p, a, b)
= e−2ξm+ (p− 2a)ξ + (a+ b) log

(
1 + e2ξ

)
(7)

and

g(ξ) = −2a+
2(a+ b)e2ξ

1 + e2ξ
− 2e−2ξm+ p (8)

as the derivative of l(ξ). We then set

ξL = ξ′ − 0.85
√
p
, ξR = ξ′ +

1.3
√
p
.

These are the points that will be used to build the two exponential components
of our proposal density; the break-points for our proposal density are then given
by

L = ξL −
l(ξL)− l(ξ′)

g(ξL)
, R = ξR −

l(ξR)− l(ξ′)
g(ξR)

The proposal density is then given by

q(ξ) ∝

 e−g(ξL)(ξ−L) for −∞ < ξ < L
1 for L < ξ < R

e−g(ξR)(ξ−R) for R < ξ <∞
.

Sampling from q(ξ) is straightforward, as the normalizing constants for each of
the components is straightforward: KL = −1/g(ξL), KC = R − L, and KR =
1/g(ξR), where KL, KC and KR denote the normalizing terms for the left, central
and right hand pieces respectively, and set K = KL +KC +KR. The algorithm
is as follows.
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1. First, sample

u1 ∼ U(0, 1), u2 ∼ U(0, 1), u3 ∼ U(0, 1).

2. Next, check u1:
(a) If u1 ∈ (0, KL/K) then

x← − log(1− u2)

g(ξL)
+ L, q ← l(ξL) + g(ξL)(x− ξL)

(b) If u1 ∈ (KL/K, (KL +KC)/K) then

x← (R− L)u2 + L, q ← l(ξ′)

(c) If u1 ∈ ((KL +KC)/K, 1) then

x← − log(1− u2)

g(ξR)
+R, q ← l(ξR) + g(ξR)(x− ξR)

3. Determine if we accept x; check if

log u3 < q − l(x).

If so accept x; otherwise, reject x and return to Step 1.

The accepted sample x can be transformed back to the original space using
z = ex.

4 Experimental results

We undertook several simulation experiments to assess the comparitive perfor-
mance of the new sampler algorithms: mGrad-1, mGrad-2 and the new hyper-
parameter samplers. In all experiments we used the effective sample size per
second (ESS/s) as a measure of performance of the samples. The ESS measures
how much correlation is present in a chain of MCMC samples; the higher the
correlation, the less information is contributed by each sample.

In all simulated examples we used the following experimental procedure. For
a given sample size n and number of predictors p, we generated a design ma-
trix from a multivariate normal distribution with covariance between predictors
given by Cov(Xi, Xj) = ρ|i−j|. Then, we randomly selected 15 predictors to be
associated, and generated their coefficients from a Student-t distribution with
a degrees-of-freedom equal to ten. We then rescaled the coefficients so that the
signal-to-noise ratio of the regression model was equal to three for the Poisson
models and 1.5 for the binomial models; the intercept was fixed at β0 = 1 for
Poisson models and β0 = 0 for binomial models. Finally, we generated n = 200
data points from this model. These choices produced models with a realistic,
sparse mix of stronger and weaker effects, and which were not (near) linearly
seperable in the case of binomial regression. All tests were conducted on a Mi-
crosoft Surface Pro 2016 laptop. Additional experiments were performed but are
not included in this article due to space constraints.3

3 Available at https://dschmidt.org
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Prior Sampler p = 50 p = 250 p = 500

(a = 1/2, b = 1/2)
Rejection (2147,7329, 11933) (48, 661, 1302) (5.2, 286, 540)

IGIG (2044, 8028,14111) (49,664,1397) (5.3,299,586)
GG (1558, 6098, 11016) (29, 500, 1207) (3.1, 221, 538)

(a = 1/4, b = 1/2)
Rejection (1766,6709,11700) (45,617,1314) (5.1,283, 554)

IGIG (966, 4399, 10526) (31, 525, 1277) (4.7, 270,572)
GG (1245, 4995, 9063) (29, 483, 1121) (3.4, 224, 509)

Table 2. (minimum, median, maximum) effective samples per second for three gen-
eralized horseshoe local shrinkage hyperparameter samplers: a rejection sampler, the
inverse-gamma inverse-gamma (IGIG) sampler and the gamma-gamma (GG) sampler.
The quantities a and b are the concentration and tail hyperparameters for the gener-
alized horseshoe prior.

4.1 Comparison of GHS hyperparameter samplers

We tested the performance of the three GHS local hyperparameter samplers:
the gamma-gamma (GG) sampler (Section 1.2, [1]), the inverse gamma-inverse
gamma (IGIG) sampler (Section 3.1) and the rejection sampler (Section 3.2). We
tested their performance on a Gaussian linear model with p = 50, p = 250 and
p = 500 predictors generated as per the procedure in Section 4, using a correla-
tion of ρ = 0.9. The samplers for the coefficients was the usual conditionally con-
jugate multivariate Gaussian. We tested two prior settings: (a = 1/2, b = 1/2),
i.e., the regular horseshoe prior, and (a = 1/4, b = 1/2), which concentrates more
prior probability mass around the origin. For a fair comparison, we implemented
the generalized inverse Gaussian sampler and the rejection sampler in C. The
IGIG sampler was implemented in pure MATLAB.

For each experiment we ran the chains for 104 burnin iterations, and then
collected 2×104 samples. The results are shown in Table 1. Overall, the rejection
sampler performed the best, but the IGIG sampler was competitive with, or
superior to, the rejection sampler for all but the case of p = 50 and a = 1/4,
with both being largely superior to the GG sampler. The performance of the
IGIG sampler, coupled with its simple implementation, recommend it as an
excellent choice of sampler for generalized horseshoe hierarchies.

4.2 Comparison of samplers for coefficients

We tested the performance of our samplers for two distributions: the Poisson,
for which a scale mixture of normals (SMN) sampler is not known, and logistic
(binomial) regression for which an SMN sampler exists [17]. For both models
we compared the mGrad-1 and mGrad-2 sampling algorithms presented in Sec-
tion 2 against the NUTS sampler (using the RStan stan glm() function). For
Poisson regression we also tested against the generalized elliptical slice sampler
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Distribution Correlation Sampler p = 50 p = 100 p = 250

Poisson

ρ = 0.5

mGrad-1 (108, 270, 615) (42,398,776) (55,358,777)
mGrad-2 (127,351,673) (18, 136, 235) (4.8, 27, 49)

pCNL (14, 36, 108) (3.8, 18, 69) (3.7, 17, 75)
NUTS (26, 35, 36) (16, 23, 24) (9.5, 14, 14)
GESS (4.3, 13, 25) (0.6, 3.3, 7.8) (0.1, 0.7, 1.9)

ρ = 0.9

mGrad-1 (12, 56, 165) (7.1, 69, 223) (2.8,103,339)
mGrad-2 (157,489,806) (25,157,305) (1.6, 30, 59)

pCNL (6.0, 18, 56) (3.3, 14, 39) (1.9, 12, 39)
NUTS (29, 40, 41) (20, 28, 28) (7.8, 12, 12)
GESS (4.0, 11, 21) (0.6, 3.3, 7.9) (0.1, 0.8, 2.2)

Binomial

ρ = 0.5

mGrad-1 (46, 315, 694) (12, 165, 425) (8.0,269,656)
mGrad-2 (52, 352, 747) (4.6, 91, 208) (0.6, 24, 54)

SMN (179,772,1936) (15,260,894) (3.1, 201, 486)
NUTS (56, 73, 76) (39, 54, 56) (17, 26, 27)

ρ = 0.9

mGrad-1 (4.6, 33, 99) (3.3, 49, 161) (4.1, 76, 312)
mGrad-2 (25, 317, 705) (11, 135, 298) (1.2, 25, 61)

SMN (96,721,1775) (49,483,1159) (5.1,161,478)
NUTS (32, 42, 44) (34, 47, 48) (17, 26, 27)

Table 3. (minimum, median, maximum) effective samples per second for various sam-
pling algorithms. mGrad-1 and mGrad-2 refer to the two gradient-based sampling algo-
rithms developed in this article, pCNL is the pre-conditioned Crank Nicholson sampler,
NUTS is the no U-turn sampler and GESS is the generalized elliptical slice sampler.

(GESS) and pCNL algorithm; however, as both of these were dominated by
mGrad-1 we did not test them for binomial regression. For logistic regression we
also compared against the optimised scale mixture of normals (SMN) sampler
implemented in the bayesreg package for MATLAB. We used the IGIG sampler
for the horseshoe hierarchy for mGrad-1, mGrad-2, GESS, SMN and pCNL.

We tested the samplers for two settings of correlation ρ = {0.5, 0.9}, and
generated a different model for each combination of p = {50, 100, 250} and ρ. To
make the comparisons as favourable for NUTS as possible we compute ESS/s
based only on the sampling times, and ignore warmup. We note that the mGrad
algorithms require substantially less warmup time for tuning than NUTS. For
NUTS we ran the chains for 103 warmup samples and then collected the following
103 samples. There were no convergence issues. For the other samplers we ran
the chains for 104 burnin iterations and the collected 2× 104 samples. For each



Bayesian Generalized Linear Models 15

test and each sampler we produced 10 chains and averaged the ESS/s scores
across the chains. The results are shown in Table 3.

In all cases the NUTS sampler exhibited an interesting property: the spread
of ESS/s values was small, with the minimum ESS/s being close to the maximum
ESS/s. For Poisson regression the NUTS sampler had higher minimum ESS/s
than mGrad-1 when ρ = 0.9. In the case of Poisson regression, the mGrad-1
algorithm is highly competitive with the NUTS sampler, even for smaller p,
and is uniformly superior for ρ = 0.5. The mGrad-2 algorithm exhibits supe-
rior performance to mGrad-1 for smaller p and higher correlation ρ, but has
poorer performance for p = 250 as the expensive matrix inversions outweigh the
improvement in mixing. The pCNL and GESS algorithms performed uniformly
worse than mGrad-1.

For logistic regression, the NUTS algorithm performed substantially better
than for Poisson regression. The SMN sampler generally achieved the highest me-
dian and maximum ESS/s scores, while the NUTS sampler uniformly achieved
the higher minimum ESS/s than mGrad-1. The mGrad-1 algorithm is largely
inferior to the SMN sampler, but generally achieved higher median and maxi-
mum ESS/s than the NUTS sampler. The mGrad-2 algorithm is uniformly worse
than SMN in the setting of logistic regression, which is unsurprising as its base
time complexity is similar to the SMN approach. We note that due to a different
model being used for each combination of p and ρ, the ESS/s scores do not
necessarily decrease as p increases as the performance of all the samplers can
vary depending on the structure of the underlying model.

Additional Test for p = 1, 000. We performed an additional experiment for
a much larger design matrix of p = 1, 000 predictors with ρ = 0.9 and 50 non-
zero coefficients for Poisson regression. We considered only the mGrad-1 and
NUTS sampler; the NUTS sampler achieved a maximum ESS/s of 7.8, while the
mGrad-1 algorithm achieved a minimum/median/maximum of ≈ (0.8, 30, 143),
which suggests that the simplicity of the algorithm potentially allows it to re-
main competitive with NUTS even for large p.

Sensitivity to Model Structure. We also performed an additional experi-
ment to examine the sensitivity of mGrad-1 and NUTS to model structure. We
generated the same design matrix and coefficients as used in the experiments for
Poisson regression with ρ = 0.5, p = 100 but rescaled the coefficients to have a
signal-to-noise ratio (SNR) of 9. The NUTS sampler achieved a maximum ESS
of ≈ 8 while the mGrad-1 sampler achieved a minimum/median/maximum of
≈ (20, 120, 245). In both cases this is roughly a three-fold reduction in compari-
son to the results obtained when the SNR was 3 (from Table 3). The sensitivity
of NUTS is primarily driven by increased sampling time rather than changes in
raw ESS, while for mGrad-1 the sampling time is unaffected but the increased
correlation in the chains reduces the overall ESS/s.
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5 Summary

In comparison to NUTS and SMN, the mGrad-1 algorithm is substantially easier
to implement, requiring only knowledge of likelihood and gradient information.
The entire algorithm, including the tuning can be implemented in around 50 lines
of MATLAB code. This simplicity, coupled with the competitive performance of
the mGrad-1 algorithm, demonstrates that it is a very useful addition to the suite
of sampling procedures avaiable for Bayesian regression. A similar conclusion
can be drawn regarding the new inverse gamma-inverse gamma sampler for the
generalized horseshoe hyperparameters: in terms of performance it is roughly
equivalent to the rejection sampler, and largely superior to the standard gamma-
gamma sampler, while being substantially simple to implement than both. We
therefore recommend this sampler to researchers looking to implement horseshoe
and generalized horseshoe hierarchies for new models. The mGrad-1 sampler and
SMN sampler for generalized linear generalized horseshoe regression models are
both implemented in the bayesreg4 Bayesian regression package.
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