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Abstract. Opioid overdose is a growing public health crisis in the United
States. This crisis, recognized as “opioid epidemic,” has widespread soci-
etal consequences including the degradation of health, and the increase
in crime rates and family problems. To improve the overdose surveillance
and to identify the areas in need of prevention effort, in this work, we fo-
cus on forecasting opioid overdose using real-time crime dynamics. Previ-
ous work identified various types of links between opioid use and criminal
activities, such as financial motives and common causes. Motivated by
these observations, we propose a novel spatio-temporal predictive model
for opioid overdose forecasting by leveraging the spatio-temporal patterns
of crime incidents. Our proposed model incorporates multi-head atten-
tional networks to learn different representation subspaces of features.
Such deep learning architecture, called “community-attentive” networks,
allows the prediction for a given location to be optimized by a mixture
of groups (i.e., communities) of regions. In addition, our proposed model
allows for interpreting what features, from what communities, have more
contributions to predicting local incidents as well as how these commu-
nities are captured through forecasting. Our results on two real-world
overdose datasets indicate that our model achieves superior forecasting
performance and provides meaningful interpretations in terms of spatio-
temporal relationships between the dynamics of crime and that of opioid
overdose.

Keywords: Forecasting opioid overdose · Spatio-temporal networks ·
Multi-head attentional networks · Crime dynamics.

1 Introduction

Opioid use disorders (OUD) and overdose rates in the United States have in-
creased at an alarming rate since the past decade [21]. Overdose deaths have
risen since the 1990s, and the number of heroin overdose deaths has risen sharply
since 2010 [17]. The growth rate of opioid overdose together with the number
of impacted individuals in the U.S., has led many to classify this as an “opi-
oid epidemic” [13]. Enhanced understanding of the dynamics of the overdose
epidemic may help policy-makers to develop more effective epidemic prevention
mechanisms and control strategies [10].
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The opioid epidemic is a complex social phenomenon involving and interact-
ing with various social, spatial and temporal factors [2]. Highlighting the links
between opioid use and various factors has drawn significant attention. Studies
have identified relationships between opioid use and crime incidences, includ-
ing cause [1], effect [7] and common causes [19]. Crime occurrences also have
non-trivial spatio-temporal characteristics – for example, routine activity theory
suggested that crimes may exhibit spatio-temporal lags as the likely offenders
of one place may reach suitable targets in other places. Therefore, how to unveil
the complicated relationship between opioid use and crime incidences is chal-
lenging. Moreover, detailed assessments of OUD and overdose growth require
systematically collected well-resolved spatio-temporal data [6]. Yet, the amount
of systematically monitored data either at a regional or local level in the U.S.
is limited and there is no common reporting mechanism for incidents. On the
other hand, crime data is meticulously collected and stored at finer-grained level.
Given the plausible relationship between crime dynamics and opioid use as well
as the availability of real-time crime data for various locations, in this study, we
explore the capability of forecasting opioid overdose using real-time crime data.

Recent works in predictive modeling has shown significant improvement in
spatio-temporal event forecasting and time series prediction [16,22]. However,
these studies suffer from two main concerns. First, most of them overlook the
complex interactions between local and global activities across time and space.
Only a few have paid attention to this, yet they model the global activities as a
single universal representation [4,3], which is either irrespective of event location
or is reweighted based on a pre-defined fixed proximity matrix [14]. None of them
learns to differentiate the pairwise activity relationships between a particular
event location and other locations. Second, most of the studies mainly focus on
performance and lack interpretability to uncover the underlying spatio-temporal
characteristics of the activities. Inspired by the idea of multi-head attentional
networks [20], we propose a novel deep learning architecture, called “CASTNet,”
for opioid overdose forecasting using spatio-temporal characteristics of crime in-
cidents, which seeks to address the aforementioned problems. Assuming that
different locations could share similar dynamics, our approach aims to learn dif-
ferent representation subspaces of cross-regional dynamics, where each subspace
involves a set of locations called “community” sharing similar behaviors. The
proposed architecture is “community-attentive” as it allows the prediction for
a given location to be individually optimized by the features contributed by a
mixture of communities. Specifically, combining the features of the given target
location and features from the communities (referred to as local and global dy-
namics), the model learns to forecast the number of opioid overdoses in the target
location. Meanwhile, by leveraging a Lasso regularization [18] and hierarchical
attention mechanism, our method allows for interpreting what local and global
features are more predictive, what communities contribute more to predicting
incidences at a location, and what locations contribute more to each community.

Overall, our contributions include: (1) A community-attentive spatio-temporal
network: We propose a multi-head attention based architecture that learns dif-
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ferent representation subspaces of global dynamics (communities) to effectively
forecast the opioid overdoses for different target locations. (2) Interpretability
in hierarchical attention and features: First, CASTNet incorporates a hierarchi-
cal attention mechanism which allows for interpreting community memberships
(which locations form the communities), community contributions for forecast-
ing local incidents and informative time steps in both local and global for the
prediction. Second, CASTNet incorporates Group Lasso (GL) [18] to select in-
formative features which succinctly captures what activity types at both local-
and global-level are more associated with the future opioid overdoses. (3) Exten-
sive experiments: We performed extensive experiments using real-world datasets
from City of Cincinnati and City of Chicago. The results indicate a significant
improvement in forecasting performance with greater interpretability compared
to several baselines and state-of-the-art methods.

2 Related Work

The existing works have investigated the links between opioid use and various
social phenomena as well as contextual factors including crime and economic
stressors. Hammersley et al. [7] stated that opportunities for drug use increase
with involvement in criminal behavior. The people dependent on opiates are
disproportionately involved in criminal activities [1] especially for the crimes
committed for financial gain [15]. Seddon et al. [19] revealed that crime and drug
use share common set of causes and they co-occur together. Most of the works
studying the relationship between opioid use and social phenomena employed
basic statistical analysis, and focused on current situation and trends rather
than predicting/forecasting overdose. Moreover, they overlooked the interactions
among spatio-temporal dynamics of the locations. Among the studies predicting
opioid overdose, [11] have proposed a regression-based approach in state-level.
Also, a neural network-based approach has been proposed [4] to forecast heroin
overdose from crime data, which identifies the predictive hot-spots. Yet, the effect
of these hot-spots on prediction is universal and irrespective of event locations.

Furthermore, there have been studies that utilized spatial and temporal de-
pendencies for event forecasting and time series prediction. Several studies em-
ployed neural models to forecast/detect events related to crime [9] and social
movements [3]. Additionally, several studies utilized deep neural models for times
series prediction. Ghaderi et al. [5] proposed an RNN based model to forecast
wind speeds. Qin et al. [16] presented a dual-stage attention-based RNN model
to make time series prediction. Similarly, Liang et al. [14] proposed multi-level
attention networks for geo-sensory time series prediction. A few of the studies
considered the complex relationships between local and global activities, yet they
modeled the global activities as a universal representation, which either does not
change from event location to location or is adjusted by a pre-defined fixed prox-
imity matrix. Most of these works simply employed a single temporal model to
model various local and global spatio-temporal activities, which is insufficient
to capture the complex spatio-temporal patterns at both local and global lev-
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els. Moreover, existing methods primarily focus on forecasting performance, yet
they provide no or limited interpretability capability to unveil the underlying
spatio-temporal characteristics of the local and global activities.

3 Method

3.1 Problem Definition

Suppose there are L locations-of-interest (e.g. neighborhoods, districts) and each
location l can be represented as a collection of its static and dynamic features.
While the static features (e.g. demographics, economical indicators) remain same
or change slowly over a longer period of time, the dynamic features are the up-
dates for each time interval t (e.g. day, week). Let Xstat

l be the static features

of location l, and Xdyn
t,l the set of dynamic features for location l at time t. We

are also given a continuous variable yt∗,l ∈ N that indicates the number of opi-
oid overdose incidents (e.g. emergency medical services (EMS) calls, deaths) at
location l at future time t∗. The collection of dynamic features from all locations-
of-interest within an observing time window with size w up to time t can be rep-
resented as X dyn

t−w+1:t = {X dyn
t−w+1, . . . ,X

dyn
t }, where X dyn

t′ = {Xdyn
t′,1 , . . . , X

dyn
t′,L}.

Our goal is to forecast the number of opioid overdose incidents yt∗,l at spe-
cific location l at a future time t∗ = t + τ , where τ is called the lead time.
Forecasting is based on the static and dynamic features of the target location
itself, as well as the dynamic features in the environment (from all locations-of-
interest). Therefore, forecasting problem can be formulated as learning a func-

tion f(Xstat
d ,X dyn

t−w+1:t) → yt∗,d that maps the static and dynamic features to
the number of opioid overdose incidents at future time t∗ at a target location d.

To facilitate spatio-temporal interpretation of the forecasting, we seek to
develop a model that can differentiate contribution of the features, the local-
ity (local features vs. global features) and the importance of latent communi-
ties when contributing to the prediction of other locations. Therefore, we fur-
ther organize the dynamic features X dyn

t−w+1:t into two sets: the local features,

{Xdyn
t−w+1,d . . . , Xdyn

t,d } represent dynamic features for the target location d, and

the global features, {Xdyn
t−w+1,l . . . , X

dyn
t,l } for l ∈ {1, 2, . . . , L}, contain the se-

quences of dynamic features for all locations of interest.

3.2 Architecture

We propose an interpretable, community-attentive, spatio-temporal predictive
model, named CASTNet. Our architecture consists of three primary components,
namely local (Fig. 1a), static (Fig. 1b) and global (Fig. 1c) components as follows:

Global Component. This component produces the target location-specific
global contribution to forecast the number of incidents at target location d at
future time t∗. It consists of K number of community blocks where each com-
munity block learns a different representation subspace of the global dynamic
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Fig. 1: Overview of CASTNet. Local component (a) models local dynamics
of the locations, and static component (b) models the static features. Global
component (c) summarizes different representation subspaces (i.e. communities)
of global dynamics, learned by community blocks (d), by querying these multi-
subspace representations through the embedding of the target location (embd).
Spatial Att. Block (e) reweights the global dynamics of locations. Checkered rect-
angles represent GL regularization. Red arrows indicate the queries for the cor-
responding attentions. “FC”: fully-connected layer; “embed”: embedding layer.

features, which is inspired by the idea of multi-head attention [20]. A community
block (Fig. 1d) models the global dynamic features through a hierarchical at-
tention network which consists of a spatial attention block (Fig. 1e), a recurrent
unit and a temporal attention. For clarity, we explain the internal mechanism of
global component in a bottom-up manner in the order (Fig. 1e → 1d → 1c):

Spatial Attention Block is used to reweight the contribution of dynamic

features of each location i at time t. The attention weight, α
(i)
k,t, represents the

contribution of the location i at time t to the community k. Since higher spatial
attention weight for a location indicates the involvement of its dynamic features
in this community, we call this community membership. ck,t is the context vector,
which summarizes the aggregated contribution of all locations as follows:

ek,t = (vspk )ᵀtanh(W sp
k X

dyn
t + bspk ) (1)

α
(i)
k,t =

exp(e
(i)
k,t)∑L

l=1 exp(e
(l)
k,t)

; ck,t =

L∑
l=1

α
(l)
k,tX

dyn
t,l (2)

where W sp
k ∈ Rn×n, bspk ∈ Rn and vspk ∈ Rn are the parameters to be learned,

and n is the dynamic feature size of any location. After the context vector ck,t
is computed, it is fed to the recurrent unit.

Recurrent unit is used to capture the temporal relationships among the
reweighted global dynamic features for the community k as hk,t = fk(hk,t−1, ck,t)
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where fk(.) is LSTM [8] for community k, and hk,t is the t-th hidden state of
k-th community. We use LSTM in our model (in each community block) since
it addresses the vanishing and exploding gradient problems of basic RNNs.

Temporal Attention is applied on top of the LSTM to differentiate the
contribution of latent representations of global dynamic features at each time
point and for each community. To make the output specific to target location, we
incorporate a query scheme based on a time-dependent community membership
(i.e., contribution of each location to the community) where the membership
is further weighted based on the location’s spatial proximity to target location
(with nearby locations getting larger weights than the further ones). Specifically,

let β
(i)
k denotes the attention weight over the hidden state hk,i of community k at

time i. The context vector νk, which is aggregate contribution from community
k, can be learned through the proximity-based weighting scheme as:

q
(i)
k = xproxd

• αk,i, (3)

β
(i)
k =

exp(q
(i)
k )∑w

t=1 exp(q
(t)
k )

, νk =

w∑
t=1

β
(t)
k hk,t, (4)

where xproxd ∈ RL is a vector encoding the proximity of the target location d
to all locations. Here, the proximity of two locations is calculated based on the
inverse of geographic distance (haversine): prox(l1, l2) = 1√

1+dist(l1,l2)
.

Community Attention aims to produce a global contribution with respect
to the target location d by combining different representation subspaces for each
of the communities {ν1, ν2, . . . , νK}. A soft-attention approach is then employed
to combine the contributions from all K communities. Here, to make the pre-
diction specific to the target location, we use a query scheme, which takes each
community vector {νk} as a key and the target location embedding as a query:

uk = rᵀtanh(V νk + embd), (5)

γ(i) =
exp(ui)∑K

k=1 exp(uk)
, ν =

K∑
k=1

γ(k)νk, (6)

where V ∈ Rm×m, and r ∈ Rm are the parameters to be learned, m is the
number of hidden units in LSTMs, and ν is the output of the global component.

Local Component. It is designed to model the contribution of local dynamic
features for any target location d (Fig. 1a). It includes a recurrent unit and a
temporal attention that focuses on the most informative time instants. Dynamic
features of target location are fed to the recurrent unit to model local dynamics
as st = g(st−1, X

dyn
t,d ) where g(.) is LSTM, as in the global component, and st is

the t-th hidden state of LSTM. Then, we also employ a temporal attention on top
of the LSTM in this component, which can select the most informative hidden
states (time instants) with respect to the dynamic features of target location d.
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We only provide the calculation of output vector of the local component to be
succinct as: ξd =

∑w
t=1 δ

(t)st where δ(t) is the attention weight for the hidden
state at time t, and ξd is the output of the local component.

Static Component. It models the static information specific to the target
location (Fig. 1b). The input incorporates the static features, Xstat

d , and a one-
hot encoding vector xidd ∈ RL that represents the target location. We apply a
fully connected layer (FC) to separately learn a latent representation for each of
the two types of information. In particular, the one-hot location vector will be
converted into an embedding embd and will be utilized in the aforementioned
query component (see Eq. (5)). Ψd is the output of this component, which is
concatenation of learned embeddings and latent representation of static features.

Objective Function. The objective function consists of three terms: prediction
loss, orthogonality loss and Group Lasso (GL) regularization as follows:

Loverall = Lpredict + λLortho + ηLGL, (7)

where λ and η are the tuning parameters for the penalty terms, and Lpredict =

1

N

N∑
i=1

(ŷi−yi)2, is the mean squared error (MSE), ŷi and yi are the predicted and

actual number of opioid overdose incidents for sample i, respectively. A penalty
term, Lortho is added to avoid learning redundant memberships across commu-
nities, i.e., multiple communities may consist of a similar group of locations. To
encourage community memberships to be distinguishable, we incorporate Lortho

into the objective function. Let ᾱk be the community membership vector de-
noting how each location contributes to the community k, averaging over time,
and ∆ =

[
ᾱ1, ᾱ2, . . . , ᾱK

]
∈ RK×L is a matrix consisting of such membership

vectors for all communities, the orthogonality loss is given by:

Lortho = ‖∆ ·∆ᵀ − I‖2F , (8)

where I ∈ RK×K is the identity matrix. This loss term encourages different
communities to have non-identical locations as members as much as possible,
which helps reduce the redundancy across communities. Lastly, we incorporate
GL regularization into objective function, which imposes sparsity on a group
level [18]. Our main motivation to employ GL is to select community-level and
local-level informative features. It enables us to interpret and differentiate which
features are important for opioid overdose incidents. It is defined as:

LGL =

K∑
k=1

(
‖Zglob

k ‖2,1
)

+ ‖Zlocal‖2,1 + ‖Zstat‖2,1, (9)

‖Z‖2,1 =
∑
g∈G

√
| g |‖g‖2, (10)
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where Zglob
k denotes input weight matrix in the kth community block in global

component. Zlocal and Zstat are input weight matrices in the local and static
components, respectively. g is vector of outgoing connections (weights) from an
input neuron, G denotes a set of input neurons, and |g| is the dimension of g.

3.3 Features

Static features are 9 features from the census data related to economical status
(median household income, per capita income, poverty), housing status (housing
occupancy and housing tenure), educational level (% of high school graduation
and below) and demographics (population, gender and race diversity index).
Dynamic features are to capture the crime dynamics of the locations that
may be predictive for opioid overdose. We extract them from public safety data
portals of the cities. The crime data gathered from different cities may have
different categories. We consider the highest level, “primary crime types” and
eliminate rare ones. Crime categories used in this work can be found in Fig. 4. In
addition to total number of incidents for each primary crime type, we also use
total number of crime and opioid overdose incidents as dynamic features. We
extract 14 and 9 crime-related dynamic features for Chicago, and Cincinnati,
respectively. Together with the number of opioid overdose incidents, the total
number of dynamic features are 15 for Chicago and 10 for Cincinnati.

4 Experiments

4.1 Datasets

We apply our method on two cities, Chicago and Cincinnati. We used “Statis-
tical Neighborhood Approximations” of Cincinnati and “community areas” of
Chicago as “neighborhoods”. There are 77 and 50 neighborhoods in Chicago and
Cincinnati, respectively. While we select 47 neighborhoods from Chicago (where
∼ 80% of opioid overdose deaths occur), we use all neighborhoods of Cincinnati.
Chicago dataset spans (08/03/15 - 08/26/18) and contains 573207 crimes and
1468 opioid overdose deaths. Chicago dataset spans (08/01/15 - 06/01/18) and
contains 75779 crimes and 5401 EMS responses. We collect the following data:
Crime data: We collect crime incident information (geo-location, time and pri-
mary type of the crimes) from the open data portals of the cities. We use Pub-
lic Safety Crime dataset? ? ? and Police Data Initiative (PDI) Crime Incidents
dataset† to extract such information for Chicago and Cincinnati, respectively.
Opioid overdose data: We collect different types of opioid overdose data for
each city since there is no systematic monitoring of drug abuse at either a regional
or state level in the U.S. For Chicago, we collect opioid overdose death records

? ? ? https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
† https://data.cincinnati-oh.gov/Safer-Streets/PDI-Police-Data-Initiative-Crime-

Incidents/k59e-2pvf
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(geo-location and time) from Opioid Mapping Initiative Open Datasets‡. On the
other hand, we utilize the EMS response data§ for heroin overdoses in Cincinnati.
Census data: We use 2010 Census data to extract features about demographics,
economical status, housing status and educational status of the neighborhoods.

4.2 Baselines

We compare our model with a number of baselines as follows: HA: Histori-
cal average, ARIMA: a well-known method for predicting future values for
time series, VAR: a method that captures the linear inter-dependencies among
multiple time series and forecasts future values, SVR: two variants of Sup-
port Vector Regression; SVRind (trained separate models for each location) and
SVRall (trained a single model for all locations), LSTM: a network in which dy-
namic features are fed to LSTM, then the latent representations are concatenated
with static features for prediction, DA-RNN [16]: a dual-staged attention-based
RNN model for spatio-temporal time series prediction, GeoMAN [14]: a multi-
level attention-based RNN model for spatio-temporal prediction, which shows
state-of-the-art performance in the air quality prediction task, ActAttn [3]: a
hierarchical spatio-temporal predictive framework for social movements.

Furthermore, to evaluate the effectiveness of individual components of our
model, we also include its several variants for the comparison: CASTNet-
noGL: GL regularization is not included in the loss function, CASTNet-
noOrtho: Orthogonality penalty is not applied so that differentiation of the
communities is not encouraged, CASTNet-noSA: Spatial attentions are re-
moved from the community blocks. Instead, the feature vectors of all locations
are concatenated, CASTNet-noTA: The temporal attentions in both local and
global components are removed from the architecture, CASTNet-noCA: Com-
munity attention is removed from the architecture. Instead, the context vectors
of the communities are concatenated. CASTNet-noSC: The static features are
excluded from the architecture, yet the location-ID is still embedded.
Settings: We used ‘week’ as time unit and ‘neighborhood’ as location unit. We
divided datasets into training, validation and test sets with ratio of 75%, 10%
and 15%, respectively. We set τ = 1 to make short-term predictions. For RNN-
based methods, hidden unit size of LSTMs was selected from {8, 16, 32, 64}.
The networks were trained using Adam optimizer with a learning rate of 0.001.
For each LSTM layer, dropout of 0.1 was applied to prevent overfitting. In
our models, the regularization factors λ and η were optimized from the small
sets {0.001, 0.005, . . . , 0.05} and {0.001, 0.0015, . . . , 0.01}, respectively using grid
search. For ARIMA and VAR, the orders of the autoregressive and moving
average components were optimized for the time lags between 1 and 11. For
RNN-based methods, we performed experiments with different window sizes w ∈
{5, 10, 15, 20}, and shared the results for w = 10 (the best setting for all models).
Our code and data are available at https://github.com/picsolab/castnet.

‡ https://opioidmappinginitiative-opioidepidemic.opendata.arcgis.com/
§ https://insights.cincinnati-oh.gov/stories/s/Heroin/dm3s-ep3u/

https://github.com/picsolab/castnet
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Table 1: Performance Results.

Chicago Cincinnati

MAE RMSE MAE RMSE

HA 0.2329 0.3385 0.5728 0.8727
ARIMA 0.2272 0.3396 0.5717 0.8952
VAR 0.2242 0.3386 0.5606 0.8712
SVRind 0.2112 0.3321 0.5153 0.8609
SVRall 0.1984 0.3063 0.4886 0.8602
LSTM 0.2024 0.3134 0.5235 0.8267
DA-RNN [16] 0.1726 0.3051 0.4817 0.8225
GeoMAN [14] 0.1679 0.2829 0.5034 0.8453
ActAttn [3] 0.1693 0.2937 0.4827 0.8326

CASTNet-noGL 0.1662 0.3129 0.4703 0.8311
CASTNet-noOrtho 0.1649 0.2948 0.4716 0.8109
CASTNet-noSA 0.1608 0.2893 0.4579 0.8152
CASTNet-noTA 0.1641 0.2876 0.4700 0.8141
CASTNet-noCA 0.1631 0.3069 0.4730 0.8225
CASTNet-noSC 0.1693 0.2980 0.4692 0.8291

CASTNet 0.1391 0.2679 0.4516 0.8032

5 Results

5.1 Performance Comparison

Table 1 shows that CASTNet achieves the best performance in terms of both
mean absolute error (MAE) and root mean squared error (RMSE) on both
datasets. Our model shows 17.2% and 5.3% improvement in terms of MAE and
RMSE, respectively, on Chicago dataset compared to state-of-the-art approach
GeoMAN. Similarly, CASTNet enhances the performance 6.3% and 2.4% on
Cincinnati dataset in terms of MAE and RMSE, respectively, compared to DA-
RNN. Furthermore, we observe that mostly spatio-temporal RNN-based models
outperform other baselines, which indicates they better learn the complex spatio-
temporal relationships between crime and opioid overdose dynamics.

We evaluate the effectiveness of each individual component of CASTNet with
an ablation study. As described in Section 4.2, each variant is different from the
proposed CASTNet by removing one tested component. Table 1 shows that the
removal of GL results in a significantly lower performance compared to the oth-
ers. In addition, CASTNet-noGL cannot select informative features. Excluding
orthogonality term (CASTNet-noOrtho) loses the ability to learn distinguish-
able communities and reduces the performances. Comparing CASTNet with
CASTNet-noCA shows the impact of community attention on the performance,
indicating that learning pairwise activity relationships between an event loca-
tion and communities is crucial. Location-specific static features are informative
since their exclusion (CASTNet-noSC) degrades the performance in both cases.
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Fig. 2: MAE and RMSE results w.r.t change in the number of communities K.

Spatial attention provides the least performance gain for both cases, yet, its re-
moval (CASTNet-noSA) results in loss of interpretability. These results reflect
that each individual component significantly contributes to the performance.

We further evaluate the performance of CASTNet with respect to the change
in number of communities K. We report results for K ∈ {0, 1, . . . , 6} in Fig. 2.
When K = 0, the model ignores global contribution, and when K = 1, the
model yields a single universal representation of global contributions, which is
irrespective of event locations. The best performances are obtained when K = 4
for Chicago and K = 3 for Cincinnati. As K increases until the optimum value,
the performance increases, and some communities are decomposed to form new
ones. After the optimum value of K, performance starts to decrease slightly
or remains stable, and the semantic subspaces of some communities become
similar. With this experiment, we indicate that learning different representations
of global activities significantly improves the forecasting performance.

5.2 Community Memberships and Community Contributions

We analyze community memberships of the neighborhoods and community con-
tributions on forecasting opioid overdose by answering the following questions.
How do locations contribute to communities? CASTNet learns different
representation subspaces (communities) of global dynamics unlike the previous
work [14,3], and each community consists of a group of different members due to
orthogonality penalty. We represent the learned communities and their member-
ships (i.e., the spatial attention weights α in Eq. (2), averaged over time for ease
of interpretation) on the left sides of Fig. 3a and 3b for Chicago and Cincinnati,
respectively. Neighborhoods on the left sides of Fig. 3a and Fig. 3b are ordered
by the number of crimes. As shown in Fig. 3, most locations have dedicated to
one community. For Chicago model (Fig. 3a), Austin (25), which has the high-
est number of crime incidents and opioid overdose deaths, formed a separate
community C4 by itself. While North Lawndale (29) and Humboldt Park (23)
together formed the community C1, West Garfield Park (26), East Garfield Park
(27) and North Lawndale (29) formed C3. Note that neighborhoods of C1 and
C3 have the highest opioid overdose death rate after Austin (25). On the other
hand, C2 is formed by the neighborhoods having low crime and overdose death
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(a) Chicago (b) Cincinnati

Fig. 3: Community memberships and community contributions on fore-
casting. For each community, left side represents community memberships (how
each location contributes to the community), and right side represents the av-
erage community contribution (how the community contribute to predicting a
target location). Edge thickness indicates the weight of community membership
(left side) and community contribution (right side). Node size denotes overall
community membership of a location (left side) and overall community contri-
bution to forecasting overdose (right side) in the target neighborhood. Edge color
shows the input and output of a specific community. Node color of a neighbor-
hood indicates the community for which the corresponding neighborhood has
the highest membership (left side). Node color of a neighborhood denotes the
community from which the neighborhood takes the largest contribution (right
side). Edges whose weights are above a certain threshold are shown.

rates including Fuller Park (37), McKinley Park (59) and West Elsdon (62).
Furthermore, for Cincinnati model (Fig. 3b), Westwood (49), where the highest
number of crimes were committed, formed a separate community C3 by itself
similar to Austin (25) in Chicago. East Price Hill (13), West Price Hill (48),
Avondale (1) and Over-The-Rhine (34) formed C2 where these neighborhoods
have the highest crime rate after Westwood (49) and the highest opioid overdose
rate. C1 is formed by rest of the neighborhoods (with low and moderate crime
rates) and their memberships of that community are almost equal.

How do the communities contribute to forecasting? CASTNet is capable
of modeling the pairwise activity relationships between a particular event loca-
tion and the communities. It allows the target location to attend the communities
to select location-specific global contributions. We analyze how these commu-
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Fig. 4: Importance of dynamic features. Mean absolute values of input
weights of local and global components.

nities contribute to forecasting by visualizing the community attention weights
(γ in Eq. (6) averaged over test samples for each neighborhood) in Fig. 3a and
Fig. 3b for Chicago and Cincinnati, respectively. The right sides of the figures
indicate the average community contributions for the neighborhoods, which are
ordered by the number of opioid overdoses on the right sides. For Chicago, C1

and C2 have more contributions than others on forecasting overdose. While C2

contributes more to neighborhoods with low or moderate opioid overdose death
rate, C1 and C3 contribute more to the neighborhoods with higher death rate
meaning that any neighborhood attends more to the community, which is formed
by the similar neighborhoods. C4 does not significantly contribute to any neigh-
borhood although it is formed by a crime hot-spot (Austin (25)). For Cincinnati,
C2 is very dominant and makes the largest global contribution to most of the
neighborhoods. The neighborhoods that formed C2 and C3 (e.g. East Price Hill
(13), West Price Hill (48), Westwood (49)) are very predictive, and the change
in their dynamics have greater impact on forecasting overdoses in the target
neighborhoods. On the other hand, C1 has larger contribution to neighborhoods
with the highest overdose rate indicating that crimes committed in the members
of C1 are informative for forecasting overdoses in opioid hot-spots.

5.3 Feature Analysis

We investigate the importance of dynamic features by analyzing the mean
absolute input weights of local and global components as shown in Fig. 4. For
Chicago case, GL selects Narcotics and Assault as the most important features
for future opioid overdose deaths in the same location. Moreover, Theft, De-
ceptive Practice, Narcotics, Burglary and Motor V. Theft are the predictive
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Fig. 5: Importance of static features. Mean absolute values of input weights
of FC layer in static component.

features from C1 while Weapons Violation, Deceptive Practice (e.g. Fraud) and
Criminal Trespass are significant from C2. Recall that, C1 and C2 are the most
contributing communities to forecasting (see Fig. 3a). This shows that property
crimes (e.g. Theft, Burglary, Deceptive Practice) are more significant predictors
than the violent crimes for Chicago. Such crimes previously committed in the
members of C1 and C2 may be a significant indicator of future opioid overdose
deaths in Chicago. On the other hand, Battery, Narcotics, Burglary, and Mo-
tor V. Theft are predictive features from C3 while Battery, Total Crimes and
Other Offenses (e.g. offenses against family) are significant from C4. However,
C3 has larger contribution than other communities for only Austin (25). C4 does
not provide a significant contribution to any neighborhood. For Cincinnati case,
Opioid Overdose Occ. is the most predictive feature for forecasting future opi-
oid overdose in the same location, which means the local component behaves
as an autoregressive module unlike the Chicago case. Furthermore, both violent
crimes including Agg. Assaults, Rape, Homicide, Part 2 Minor (e.g. Menacing)
and property crimes including Burglary/Breaking Ent., Theft, Part 2 Minor (e.g.
Fraud) are significant features from C1. On the other hand, Theft and Part 2 Mi-
nor from C2, and Theft and Burglary from C3 are predictive features for future
opioid overdose in the target locations. Recall that C2 and C3 have more salient
contribution on most of the neighborhoods, which implies that commitment of
previous property crimes (especially Theft) in the members of those communi-
ties may be one of the potential indicators of future opioid overdose in the other
neighborhoods. Our findings are consistent with the literature that highlighted
the connection between crime and drug use, and suggested the property crimes
such as theft, burglary might be committed to raise funds to purchase drugs [1].

We explore the importance of static features by analyzing mean absolute
input weights of FC in static component (see Fig. 5). For Chicago, demographic
features (Population, Gender Div. and Race Div.) are significant. Owner Occu-
pied H. units, Poverty and Educational Att. are also informative. For Cincinnati,
Gender Div. and Population are important as well as Educational Att. and Per
Capita Income. Based on the results, the neighborhoods with higher population,
and lower or moderate gender diversity may require additional resources to pre-
vent opioid overdose in both cities. Economic status is important for both cities,
which is consistent with the previous work suggesting that communities with a
higher concentration of economic stressors may be vulnerable to abuse of opi-
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oids as a way to manage stress [12]. Among three economic status indicators, GL
selects only one, Poverty for Chicago and Per Capita Income for Cincinnati.

6 Discussion and Future Work

We presented a community-attentive spatio-temporal model to forecast opioid
overdose from crime dynamics. We developed a novel deep architecture based on
multi-head attentional networks that learns different representation subspaces
and allows the target locations to select location-specific community contribu-
tions for forecasting local incidents. Meanwhile, it allows for interpreting predic-
tive features in both local-level and community-level, as well as community mem-
berships and community contributions. We showed the strength of our method
through extensive experiments. Our method achieved superior forecasting per-
formance on two real-world opioid overdose datasets compared to baselines.

Our results suggest different spatio-temporal crime-overdose potential links.
The overdose deaths at a target neighborhood in Chicago appear to be bet-
ter predicted by crime incidents at neighborhoods in the same community. Also,
change in crime incidences in neighborhoods with low crime rates is an important
indicator of future overdoses in most of the other neighborhoods. In Cincinnati,
the crime incidents occurred in communities comprising those crime hot-spots
seem to well predict the overdose events in most of the neighborhoods. Further-
more, the predictive local activities are different in two cases. While the local
crime incidents, Narcotics and Assault, are predictive for local overdose deaths
in Chicago, previous overdose occurrences are informative for future overdose in-
cidents in Cincinnati. On the other hand, the global contributions to forecasting
local overdose incidents show similar patterns in both cities. Change in property
crimes, in particular Theft, Deceptive Practice, Burglary and Weapons Violation
(crime against to society) in Chicago, Theft and Burglary in Cincinnati, can be
significant indicators for future local overdose incidents as well as certain type
of violent crimes (Battery for Chicago and Agg. Assault for Cincinnati). Last
but not the least, demographic characteristics, economic status and educational
attainment of the neighborhoods in both cities may help forecasting future local
incidents. Our findings support the hypothesis that criminal activities and opi-
oid overdose incidents may reveal spatio-temporal lag effects, and are consistent
with the literature. As future work, we plan to investigate the link between opi-
oid use and other social phenomena using our method. We also plan to extend
our model to consider multi-resolution spatio-temporal dynamics for prediction.
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#1637067 and #1739413. Any opinions, findings, and conclusions or recommen-
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