FastPoint: Scalable Deep Point Processes

Ali Caner Tiirkmen!'* B4, Yuyang Wang?, and Alexander J. Smola?

! Department of Computer Engineering, Bogazici University, 34342 Istanbul, Turkey
2 Amazon Research, Palo Alto CA, USA
caner.turkmen@boun.edu.tr
{yuyawang, smola}@amazon.com

Abstract. We propose FastPoint, a novel multivariate point process
that enables fast and accurate learning and inference. FastPoint uses
deep recurrent neural networks to capture complex temporal dependency
patterns among different marks, while self-excitation dynamics within each
mark are modeled with Hawkes processes. This results in substantially
more efficient learning and scales to millions of correlated marks with
superior predictive accuracy. Our construction also allows for efficient
and parallel sequential Monte Carlo sampling for fast predictive inference.
FastPoint outperforms baseline methods in prediction tasks on synthetic
and real-world high-dimensional event data at a small fraction of the
computational cost.

1 Introduction

Many applications produce large data sets that can be viewed as sets of events
with “timestamps”, occurring asynchronously. Examples abound, such as user
activity on social media, earthquakes, purchases in online retail, order arrivals
in a financial market, and “spiking” activity on a neuronal circuit. Modeling
complex co-occurrence patterns of such events and predicting future occurrences
are of practical interest in a wide range of use-cases.

Temporal point processes (TPP) are probabilistic models of such data, namely
discrete event sets in continuous time. They have been extended widely to describe
patterns through which events (points) interact, and to model side information
available in the form of features (marks). However, TPPs pose two key challenges:
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Fig. 1. Typical draw from a bivariate point process on the unit interval. Events occur
in continuous time and belong to one of two types (marks) represented here as triangles
and discs.
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— How does one design an expressive model that can capture complex de-
pendency patterns among events, while keeping the computational cost of
learning manageable?

— How does one perform predictive inference, i.e., describe distributions of how
events will occur in the future, efficiently?

The first question is often addressed by a class of TPPs defined in terms of
their conditional intensity function [3], i.e., the instantaneous rate of events given
previous points. A popular example is the Hawkes process [9], where the intensity
is a linear function of the effects of past events. These models and variants have
been explored in a range of application domains [1, 7, 8, 24]. Recently, recurrent
neural networks (RNNs) have been used to approximate the conditional intensity
function [6,13,21]. By conditioning intensity on a vector embedding of the
event history, RNN-based models sidestep an important computational challenge
in likelihood-based parameter estimation for TPPs. However when the point
process is multivariate, i.e., when events are identified as members of a finite
set of processes such as purchases of a certain product or tweets of a certain
user, the model specification must be extended to account for how these event
types (or marks) interact [16,17]. In both Hawkes processes and RNN-based
approximations, computational difficulties associated with learning and inference
are greatly exacerbated by high dimensionality — a large number of marks.

The second problem requires characterizing distributions of event patterns
in a future interval, which leads to an intractable integral over all possible
“point configurations”. A popular alternative is Monte Carlo estimation, where
forward samples from the process are taken to evaluate estimates. However,
forward sampling from a point process is costly. When high-dimensionality is a
concern, sampling is further complicated by drawing from the mark distribution,
recomputed for each point.

In this paper, we propose a novel model, FastPoint, for efficient learning and
approximate inference in multivariate TPP. We combine the expressiveness of
RNNSs to model mutual excitation (between marks), with well-studied Hawkes
processes to capture local (within marks) temporal relationships. This results in
significantly faster learning with better generalization in the high-dimensional
setting. Our contributions can be summarized as follows,

— We introduce a novel multivariate TPP that uses deep RNNs as the backbone
to capture mutual excitation relationships among different marks (e.g., among
different users on a network or different items in online retail) while using
Hawkes processes to capture local dynamics. By trading off the granularity
at which cross-mark dynamics are captured, FastPoint can scale to millions
of correlated point processes.

— Our construction leads to favorable computational properties including re-
duced time complexity and enables parallel and distributed learning. Learning
in high-dimensional point processes is accelerated by over an order of magni-
tude.
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— Our model leads to a more parsimonious description of temporal dynamics
and better generalization in an array of real-world problems compared to
RNN-based models and Hawkes processes.

— FastPoint’s unique construction can be exploited for a sequential Monte Carlo
(SMC) routine that allows for substantially faster simulation and inference.
This results in predictive estimates of equivalent variance for less than a
percent of the computation time in comparable methods.

We introduce the required background on TPPs, neural TPP variants, and
concerns in sampling in Section 2. We introduce our model and algorithm in
Section 3. Section 4 presents related work, and Section 5 discusses empirical
results attained on datasets from social media, user behavior in music streaming,
and earthquake occurrences. Section 6 concludes the paper.

2 Background

TPPs are statistical models of discrete (instantaneous) events localized in contin-
uous time [3]. Concretely, just as a draw from a univariate continuous probability
distribution is a real number; a draw from a point process on a bounded set
(0,7 is a set of points {#;}V;, 0<t; < - - <ty <T.

Events (indexed here by i € {1,..., N}) at times ¢; may be equipped with
marks, y; € F. When F is a finite set, indexed by k € {1,..., K}, an equivalent
formalism is multivariate (or multitype) TPPs — i.e., a set of K (correlated) point
processes. For example, letting &k index users, multivariate TPPs can be used to
jointly model timestamps on their tweeting activity. Figure 1 represents a draw
from a bivariate (K = 2) point process.

The Poisson process is the “archetypal” point process [14], and it is char-
acterized by two main assumptions. First, one assumes that the point process
is simple, i.e., no two points coincide almost surely. Second is the assumption
of independence: point occurrences on disjoint subsets of R are independent.
While the first condition will underlie all point processes introduced here, it is
this second assumption of independence that limits a realistic understanding of
real-world phenomena. Many real-world events not only occur due to exogenous
factors but ezcite or inhibit each other. For example, earthquakes excite nearby
fault lines and increase the probability of “aftershocks”. Social media activity
elicits responses from other users. To capture such effects, one needs a richer
class of TPPs than Poisson processes.

A convenient way of writing a TPP in which events depend on each other is
through the conditional intensity function. We heuristically define the conditional
intensity A* [3] as the probability of observing a point in the infinitesimal interval
after time ¢, given history H;. Concretely,

)\*(t) — lim P{N(t,t—F (5] > 0|Ht}’
510 1)

where N (a,b] is the random variable corresponding to the number of points in
the interval (a, b].
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The conditional intensity uniquely determines a TPP. The log likelihood of a
set of parameters of the conditional intensity ©«, given realization {¢;}, can be
written in terms of the conditional intensity,

T
E(@A*):ZlogA*(ti)f/o A*(s)ds. (1)

A concrete example of conditional intensity TPPs is the Hawkes process [1,9,10]
which captures self-excitation behavior based on two assumptions: additivity and
linearity. The conditional intensity of a (univariate) Hawkes process is

N(8) = n+ Y et —ty), (2)

t;<t

where ¢ is a positive and causal kernel function. A common kernel is the ex-
ponential decay ¢(z) = afexp(—pB(z)). The Hawkes process lends itself to
interpretation as a branching (immigration-birth) process in continuous time [11].
In this sense, the branching ratio a corresponds to the long-run average number
of “child” events a given event causes (or “excites”). fexp (—S(x)), in turn, is
the delay density, the probability density of the delay between parent and child
events. For o < 1, the process satisfies the stationarity condition.

The fundamental difficulty in fitting Hawkes processes, or any general point
process defined via the conditional intensity, is that computing the likelihood
(1) takes time quadratic in the number of events. Note (eqns. (1), (2)) that
the computation of A*(¢;) is a sum over all {t;};<;, and that the likelihood
requires computing intensities of all observed points. Computational issues are
exacerbated by multivariate processes where one must account for relationships
among K marks. A notable exception to quadratic-time likelihood computations
is the exponential decay kernel which allows for likelihood computation in linear
time (see Appendix A).

Scalability problems in parameter estimation were partially addressed by
“neural point processes”. Several recent contributions have proposed combining
neural networks with conditional intensity TPPs. In Recurrent Marked TPP
(RMTPP), Du et al. [6] propose to model a multivariate point process via an
approximation to the conditional intensity function. This is achieved by an RNN|
in their experiments an LSTM [12]. Effectively, the LSTM embeds the event
history H; = {(t;,4:)|t; < t} to a vector, on which the conditional intensity
function and the conditional distribution of the mark of the next point are
calculated. Concretely, they take the conditional intensity

A*(t) = exp(VThj +B(t—t;)+b), (3)

where 3, b are scalar parameters, v is a vector parameter of appropriate dimension.
h; is the output of the LSTM for point ¢;. That is, h; = LSTM (h;_1,t;,k;). j =
sup{¢ € N : ¢; < t}. Furthermore, they take, y;;1 ~ Categorical(softmax(Vh; +
b)), where V, b are the weight and bias parameters of a dense neural network
layer that maps LSTM outputs to the categorical likelihood.
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RMTPP allows bypassing expensive optimization routines in general con-
ditional intensity TPPs while leaving ample capacity for learning complex de-
pendencies across time. The key observation in neural point processes is that
h; serves as a vector embedding for H;,, and the intensity computation can be
handled recursively. RMTPP is particularly convenient since it enables fast and
easy implementation. The integral in the likelihood (the compensator term) can
be computed exactly.

RMTPP was extended in [21], where the authors propose to parameterize
the intensity function via a continuous time LSTM where the memory cell of
the LSTM decays in time. This model, while more expressive as it captures
several decaying influences, results in an intractable integral for computing the
compensator.

Although TPP parameter estimation is greatly simplified by an approximation
to the conditional intensity, performing predictive inference remains a significant
challenge. Monte Carlo methods have emerged as the primary method for inference
in TPPs, seeing as exact inference involves an intractable integral in all but
the simplest models. Nevertheless, drawing exact samples from a TPP is a
computationally cumbersome task: the points have to be sampled in sequence
and the conditional intensity has to be re-evaluated at each point.

The traditional method for sampling from a TPP is Ogata’s thinning method
[22]. Tt is based on the observation that, conditioned on the history at a given
point, the process until the next point can be cast as a non-homogeneous Poisson
process. Then, if one can upper bound the intensity function, the next point can
be drawn via “thinning”, i.e., proposing the next point from a faster homogeneous
Poisson process and accepting based on the ratio of intensities. However, apart
from the fact that the sampling routine has to be called in sequence, this algorithm
introduces the computational cost of rejected points. We give a description of
Ogata’s algorithm in Appendix B.

3 FastPoint: Scalable Deep Point Process

3.1 Generative Model

Neural TPP models greatly simplify estimation in large-data (large N) regimes
under a reasonable number of marks K = 103, while adding the ability to capture
complex co-occurrence patterns. However, many real-world events have marks
that are from a much larger set of possible values, e.g., in events associated
with millions of users or purchases from a catalog of several hundred thousand
products.

The main computational difficulty arises from accounting for interactions
between events from different marks in the same manner as one addresses
interactions between events of the same mark. In traditional point processes, such
as multivariate Hawkes processes — this leads to computing and bookkeeping
for O(K?) branching parameters. In neural TPPs, training complexity reduces
to O(NK) which can still be prohibitively high. Furthermore, RNNs are well
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Fig. 2. Above: RMTPP computes the conditional intensity for the next point through
an LSTM for each point in a sequence, Below: In FastPoint, the LSTM is conditioned
on an interval of points, and computes added intensity for the next interval. The
self-excitation in each mark, individually, is accounted for by a Hawkes process.

known to have difficulty in capturing long-range dependencies. This is especially
important in high-dimensional temporal point processes since a large number
of possibly unrelated marks are observed in a sequence before a relevant item
is observed — an effect that could have easily been captured by self-exciting
processes.

Our model, FastPoint, is built on a simple yet profound insight: mutual
excitation dynamics can be modeled at a lower frequency than with which one
accounts for self-excitation. More precisely, FastPoint addresses mutual-excitation
on a fixed grid along time and through a deep neural network, while local self-
exciting dynamics are captured with univariate Hawkes processes. We write the
conditional intensity

Ni(8) = g(ViT (M) + bi) + i+ Y nlt — 1), (4)
H{®

where g denotes the softplus function, 7 = sup{r’ € G|7’ < t}, and G =
{0, A,2A ...} denotes some uniformly sampled “grid”. v, by, puy are parameters,
h(.) is a function implemented by an LSTM, and ¢, is the exponential decay
kernel py(2) = ax By exp(—Br).

FastPoint is composed of individual linearly self-exciting Hawkes processes to
capture local effects in each process, as given by the second and third summands
of (4). The first term is a non-negative added intensity contributed by an LSTM
that “clocks” at set coarse intervals and “synchronizes” the processes. The inputs
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Table 1. Comparison of training and sampling time complexities of multivariate

temporal point processes

Process Conditional Intensity Training Sampling
Complexity Complexity
Poisson X (t) = Apr. where pr, = A/ O(K) O(N + K)
Hawkes Ae(t) = e+ D ot = ti, y2) O(N? + NK)  O(N’K)
He

RMTPP [6] Ne(t) = plklA(Ho)) £ (t, h(Hr)) O(NK) O(NK)

Ak(t) = N h(t
Neural Hawkes Process[21] ® f (wie A(1)) O(NK) O(NK)

h(t) = 0; © (20(2¢(t)) — 1)

g(vi ('HT)+bk)+uk+Zgo (t—t)
FastPoint T =sup{r’ < t|7’ € G} O(N + K|gG|) O(N + K|g|)

G=1{0,A4,24,.. .}

of the LSTM are the interarrival times and embeddings of past marks of previous
points, as in [6,21]. We give a stylized depiction comparing FastPoint to other
neural TPP models in Figure 2.

FastPoint can be interpreted as a global-local time series model [20], where the
intensity processes are composed of a global component (given by the LSTM, the
first term of (4)), and local components that are each a Hawkes process. While
this greatly simplifies computation, it leads to a realistic-enough description
of many real-world events. Our model encodes the assumption that mutual
excitation often takes place with longer delays than self-excitation. For example,
for limit order book analysis in finance, FastPoint models self-excitatory behavior
of individual event sets (i.e., assets) at ultra-high-frequency resolution, while
cross-asset effects are captured at lower resolutions. Finally, note that FastPoint
offers a general template for constructing multivariate TPPs. The global model
(LSTM) can be changed with other deep neural network architectures such as
the Transformer [25] or a simple multilayer perceptron. The local model can also
be switched, e.g., with a Poisson process.

FastPoint’s key computational advantage is that it eliminates the need to
compute K-many terms at each point for likelihood-based estimation. Intuitively,
multivariate TPP likelihood computation requires a sequential pass over all points
in an observation. Furthermore, the compensator term in the likelihood — i.e.,
the probability that no points are observed in between each point has to be
computed for all K marks, resulting in O(NK) cost. FastPoint yields significant
benefit in both respects. First, overall computational complexity decreases to
O(N + K|G|), invoking both the memoryless property of exponential decays in the
Hawkes process and favorable computational properties of RNN-based conditional
intensity approximation. Second, the likelihood computation of individual marks
can be parallelized over. In this manner, FastPoint is amenable to both massively
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parallel and distributed implementations and solves a crucial scalability problem
in point process estimation and simulation. See Table 1 for a comparison of
computational complexities associated with different point processes. We give
further details on FastPoint’s construction, implementation, global and local
model choices in Appendix A.

3.2 Sequential Monte Carlo Sampling

We turn to predictive inference, characterizing distributions of future event
occurrences with FastPoint. Concretely, we seek to estimate expectations of the
form,

Ep (¢ ({(ti vi) Ye,041) [He] (5)

where {(ti,%:)}(t,t+1) denotes (random) realizations of an arbitrary marked point
process P which we approximate with FastPoint, on the forecast horizon (t,t+ T).
¢ denotes some function of the data, e.g., a summary statistic. For brevity, we
denote IT = {(t;,yi)}(t,t+-1), i-e., the random variate corresponding to possible
configurations of (a.s. finitely many) marked points on the given interval. Note
that

E[p(ID)|H:] = / o) f(IT|H)dll, (6)

IIex

is a non-trivial integral over X, the point configuration space [19].

We will rely on Monte Carlo methods for approximating Ep [¢(IT)|H:]. Fast-
Point already alleviates part of the computational burden associated with sam-
pling from multivariate point processes. That is, it allows for simulating each mark
individually, in parallel, between each LSTM computation. For each such interval,
one could work with Ogata’s thinning algorithm in parallel. This still results in
the difficulty of sampling sequentially, with the added overhead of rejecting some
of the points drawn. These computational issues are further complicated by the
difficulty of implementing thinning in “batch” mode, in modern deep learning
frameworks such as Apache MXNet.

We suggest an alternative approach hinted by the global-local assumption of
FastPoint. We take sequential importance weighted samples to evaluate expecta-
tions of the form (5), by proposing from a suitably parameterized Poisson process.
The sync points of the global model, on the grid G, are natural points to serve as
the epochs of a sequential Monte Carlo (SMC) algorithm [5]. Furthermore, we
find that the intensity at the beginning each interval doubles as a good proposal
intensity.

For short enough prediction horizons, the Poisson process constitutes an
effective proposal in two regards. First, surprisingly, short enough intervals
result in low-variance samples or high effective sample sizes (ESS). Furthermore,
invoking homogeneity and the thinning property of Poisson processes [14], the
times and the marks of future points can be sampled independently and in parallel.
Concretely, for sampling from a multivariate homogeneous Poisson process with
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Algorithm 1: Sequential Monte Carlo sampling of FastPoint
Input: T, A, M, ¢
begin
Wj <— 1,y
T < to
while 7 < T do
for particles j =1 to M do in parallel
Compute Ay = \i(7), Vk € {1,2,..., K}
Draw N; ~ Poisson(A x >, Ax)
Draw {t{"'},7, ~ PP(5, )
for i =1 to N; do in parallel
‘ Draw 3 s.t. p(y?) = k) x Mg

endfor
, o p D g9y
R R G A STy ey
endfor
T 1T+ A

ESS « [lwl|?/|wl|3
if ESS < ¢ then
Resample particles, s.t.

{999 Yeetwormt = {E7,49) Y e (1,1 With prob. o< w, V5’
end

end
end

intensities A\, we can instead sample from a global Poisson process with intensity
A = Y, Ak. The marks can be drawn in parallel, each in constant time, with

Pr(k) = Ak/ 2p Ak

These observations result in a straightforward SMC algorithm. Namely, we
sample from Poisson processes in sequence, updating both the particle weights and
Poisson process parameters. We give a concrete description of FastPoint-SMC in
Algorithm 1, where we use w; to denote the importance sampling particle weights,
% the resampling threshold and PP the Poisson process from which timestamps
are drawn. Finally, p({( 4 ,yl )}|7—l )s ({(tgj),yz(]))}|;\,p*) denote the densities
with respect to FastPoint and the Poisson process proposals respectively.

Counterintuitively, FastPoint-SMC scales well with respect to the number of
marks K. To observe why, note that in practice, the number of points sampled in
each interval is much smaller than K. For marks that are not drawn, the Poisson
proposal density and FastPoint density are identical. In other words, marks for
which no points were drawn do not contribute to the sample variance. Therefore,
for short enough A, FastPoint effective sample sizes remain high for large K,
scaling favorably to high dimensions in sampling as well as training.
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4 Related Work

In [26], the authors introduce a Wasserstein Generative Adversarial Network
for point processes, which leads to likelihood-free learning of generative models
for point processes. Recently, latent variable neural network models for marked
point process generation were explored in [23]. Both models use a generative deep
network as the backbone of their construction and are hence easy to sample from.
However, neither model is geared toward scalability in the number of marks.

Linderman et al. [18] explore a Rao-Blackwellized particle filter for inference in
latent point processes, which could be used for predictive inference. However, the
algorithm is only explored in the context of multivariate Hawkes processes and
not extended to high-dimensional processes or neural TPPs. Somewhat similarly
to our mix of discrete-time and continuous-time point process construction [27]
explore a twin RNN architecture. However, their model employs yet another
RNN to model continuous time effects, and is not amenable to high-dimensional
modeling.

Scaling to high dimensions is a current and challenging problem in TPPs [1].
To our knowledge, FastPoint is the first model to consistently address very large
discrete mark spaces, as well as the first to combine self-exciting processes with
the neural TPP literature. Finally, ours is the first treatment of sequential Monte
Carlo simulation in neural TPP, and one of the first to explore it for TPP in
general.

5 Experiments

We implement RMTPP and FastPoint on Apache MXNet [2] with operators for
Hawkes process likelihood and gradient computations in the MXNet backend®.
For learning, we use MXNet Gluon’s Adam optimizer. We run experiments on
AWS p3 instances equipped with NVIDIA Tesla V100 GPUs.

5.1 Model Performance

We evaluate FastPoint’s performance on large-scale, high-dimensional point
process data. First, we compare generalization performance based on the log-
likelihood of a held-out future time frame. We then compare computational
performance via standardized computation times for learning.

We compare FastPoint’s generalization performance to the following set of
baseline models,

— Self-exciting Hawkes process, i.e., a collection of univariate exponential-
decay Hawkes processes as given in (2). Note that this baseline amounts to
FastPoint with only the local model component.

— RMTPP [6], as given in Table 1.

! The code is made available as part of MXNet. See https://github.com/apache/
incubator-mxnet/blob/master/src/operator/contrib/hawkes_11-inl.h
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Table 2. Negative log-likelihood loss of different point processes on a held-out sample

HP-5K HP-10K NCEDC MemeTracker LastFM-1K

Events (millions) (V) 1 1 0.8 7.6 18

Marks (K) 5000 10000 1000 71566 105222
Hawkes 27009 30441 10346 42406 25087
RMTPP 27008 30491 14424 42507 30489
B-RMTPP 27008 30483 14393 42304 30474
FastPoint-5 26998 30412 10314 41007 25271
FastPoint-10 26997 30412 10287 41253 25024
FastPoint-20 26998 30412 10261 41398 24500

— B-RMTPP, a modified version of RMTPP given by the conditional intensity
() = g+ p(klh(He,))) exp(viA(He, ) +bx + Bt — 1)),

adding a background intensity. While a seemingly simple modification, this
makes RMTPP absolutely continuous with respect to the Poisson process.
That is, RMTPP is a terminating point process, making simulation schemes
such as Ogata’s algorithm invalid. Apart from correcting for this theoretical
issue, this formulation leads to better generalization.

We compare the predictive performance of FastPoint to baselines on several
data sets,

— HP-5K, and HP-10K are synthetic data sets sampled from a multivariate
Hawkes process with the number of marks (K) set to 5000 and 10000 respec-
tively. We use hawkeslib 2 to generate 1 million events from Hawkes models
parameterized by randomly drawn branching matrices.

— Earthquake events collected from the NCEDC earthquake catalog search
service [4]. We collect 800K earthquake events in the Northern California
area and cluster the events into marks based on their coordinates, associating
them to one of 1000 “locales”. The prediction task is to best represent the
time and locales of earthquake occurrences.

— A subset of the MemeTracker data set [15], that includes timestamped
records for 7.6 million social media sharing events of memes, belonging to
one of 71566 clusters.

— The LastFM-1K 2 dataset, which includes 19 million records of listening
events, belonging to one of 105222 artists.

For RMTPP and FastPoint, we set the number of hidden units to 50 in
synthetic data experiments and 100 in real-data experiments respectively. We
use early stopping and weight decay for regularization. To mitigate the effect of

2 http://github.com/canerturkmen/hawkeslib
3 https://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-
1K.html
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Fig. 3. (a) Training time on a single batch of 2500 events vs. the number of marks.
FastPoint-2 and FastPoint-5 refer to the FastPoint with interval lengths set to 2 and
5 respectively. Numbers are reported as multiples of time taken by FastPoint-2 on 10%
marks. (b) FastPoint training time on a single batch of 25000 events as interval lengths
are increased. Different lines correspond to different numbers of marks. Numbers are
indexed to the time taken by for 10° marks with A = 0.01

possible numerical issues on experimental outcomes, we normalize all data sets
to the same time scale to an average intensity of 50 events per unit of time.

We compare predictive accuracy in terms of the negative log-likelihood — i.e.,
average model loss on a held-out future interval of 5000 points. Note that a more
interpretable measure of accuracy is difficult to define in point processes, and
previous works have used a mix of predictive log-likelihood with other metrics such
as squared error for timestamps or multiclass accuracy for marks [6]. However, we
observe these metrics lead to little insight and high variance in high-dimensional
processes.

We present our results in Table 2. We give outcomes for three different
FastPoint alternatives, varying the LSTM interval length A. That is, we denote
the A = 2 case as FastPoint-2. We report average loss over a long held-out
interval that includes at least half of the points in the full training set.

FastPoint categorically outperforms baselines in predictive accuracy. In syn-
thetic data experiments, we observe that FastPoint leads to better generalization
than both univariate Hawkes processes and neural TPP baselines. The margin
of improvement widens in real-world data sets with greater K. The benefit of
having a local model is especially notable in NCEDC and LastFM-1K. We
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K (x10%) Improvement
! 10 89.1
e 20 109.1
§ 30 115.1
: —__ e 40 169.9
QEJ —== FastPointSMC 50 186.3
' 60 240.7
: 70 267.2
g 80 292.0
e 90 284.7
100 E===========777

01 02 03 04 05 06 07 08 09
K - Number of Marks le5

Fig. 4. Left: Sampling times of RMTPP (Ogata’s sampler) vs. FastPoint-SMC, indexed
on FastPoint-SMC. Right: The factor of improvement in sampling times, i.e., the
multiple of time taken by RMTPP-Ogata relative to FastPoint-SMC. FastPoint results
in gains of nearly 300x times.

also find that in practice, FastPoint is less prone to overfitting and converges
reasonably quickly.

We contrast FastPoint’s computational performance to other deep TPP models
under increasing dimensionality. In Figure 3a, we compare computation times
for processing a batch of 2500 events during training. For 500K marks, FastPoint
improves on the computation time by over a factor of 20. Beyond 500K marks,
the memory footprints of RMTPP and B-RMTPP grow to an unmanageable size
making comparison impractical, though the trend is evident. Moreover, observe
in Figure 3b that FastPoint allows trading off modeling accuracy by further
decreasing granularity (increasing the LSTM interval length A). For example,
allowing a wider interval of 20 time units, one can learn a model of a million
marks in a reasonable amount of time. Combining the two effects, FastPoint can
lead to faster training of over two orders of magnitude, not accounting for other
side benefits such as the ability to work with larger batches of data, longer time
intervals, or performing inference in parallel such as on multi-GPU architectures.

5.2 Sampling

We now present empirical findings on FastPoint’s sampling performance, using the
SMC sampler introduced in Section 3.2. We compare the time taken by RMTPP
(using Ogata’s thinning method) and the FastPoint SMC sampler to generate
Ny = 100 samples from a learned point process, with a fixed forecast horizon of
10 time units. We present a comparison of standardized computation times in
Figure 4, varying the number of marks K. FastPoint-SMC easily results in faster
sampling by a factor of nearly 300x and its sampling time scales favorably with
respect to the number of marks.
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Fig. 5. (a) Effective sample sizes with increasing forecast horizon. (b) Effective sample
sizes decay quickly with increasing branching ratio (c) Relative improvement in sampling
time, accounting for decreases in ESS, increase with respect to K.

However, our analysis overlooks the fact that SMC generates samples that
lead to higher variance estimates. Indeed, it is not apparent whether sequentially
drawn importance-weighted samples from a Poisson process would lead to good

estimates for FastPoint, especially in the presence of a large number of marks.

Surprisingly, for small enough branching ratios a and short enough sampling
intervals, the Poisson proposal leads to low variance samples. To demonstrate
this, we compute the effective sample size (ESS, cf. Algorithm 1) for importance
weighted samples of FastPoint, which corresponds to the number of exact samples
that would result in equivalent variance.

In Figures 5a and 5b we present the ESS for 100 importance-weighted samples
drawn on a single interval (without resampling or sequential sampling) of length
A and for fixed branching ratios (for all marks) of . We set the number of
marks to 10%, and the average intensity to 50 points per unit of time. We first
observe that SMC produces reasonably efficient samples as the forecast horizon
increases, resulting in an ESS of 60 for a horizon of 5 time units (roughly, 250
points). However, we also find that the ESS decays quickly as the branching ratio
« increases beyond 0.1. In practice, however, FastPoint accounts for part of the
self-excitation behavior through the global model, leading to smaller branching
rations for most marks.

We find that the SMC routine performs well in terms of sampling efficiency as
the dimensionsality increases. In Figure 5c, we compute the Effective Sampling
Time Multiple (ESTM). Letting TS, TS denote the time taken to sample from

()
FastPoint-SMC and RMTPP-Ogata respectively, we define ESTM = T‘(’s> X E]\f S,
T s

F
This summary metric roughly corresponds to the factor by which FastPoint
accelerates sampling, accounting for the higher variance introduced by SMC.
Setting a = 0.05, A = 1, we vary the number of marks to find that FastPoint

80000
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results in greater speed by a factor of over two orders of magnitude, for estimates
of equivalent variance.

6 Conclusion

Multivariate point processes are natural models for many real-world data sets.
However, due to the computational complexity often associated with learning
and inference in TPPs, other simplified models (e.g., by discretizing time or
assuming independent marks) have been favored over them in many application
domains. Moreover, most existing approaches do not address high-dimensional
multivariate TPPs, a case that often arises in practice, with an expressive model
that scales well in terms of generalization performance and computational cost.
Finally, performing simulation (sampling) efficiently in general multivariate TPPs
is an open problem.

FastPoint combines the interpretability and well-understood theory of Hawkes
models with recurrent neural networks, addressing these long-standing challenges
in point process modeling. First, it unlocks scalable estimation and simulation in
millions for correlated point processes via a parsimonious global-local model. It
can be used for accurate modeling of high-dimensional asynchronous event data,
such as item purchases in a very large catalog, activities on a web-scale social
graph, or limit order events in an order book with thousands of assets. Second,
our SMC algorithm allows efficient sampling, accelerating predictive inference by
over two orders of magnitude.

FastPoint’s global-local point process construction is flexible. The global and
local model components can be changed to other models best suitable for the
task. Exploring other global-local multivariate point process constructions and
better understanding their properties for learning and sampling remain exciting
avenues for future research.
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