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Abstract. Transfer fees for soccer players are at an all-time high. To
make the most of their budget, soccer clubs need to understand the type
of players they have and the type of players that are on the market.
Current insights in the playing style of players are mostly based on the
opinions of human soccer experts such as trainers and scouts. Unfortu-
nately, their opinions are inherently subjective and thus prone to faults.
In this paper, we characterize the playing style of a player in a more rigor-
ous, objective and data-driven manner. We characterize the playing style
of a player using a so-called ‘player vector’ that can be interpreted both
by human experts and machine learning systems. We demonstrate the
validity of our approach by retrieving player identities from anonymized
event stream data and present a number of use cases related to scouting
and monitoring player development in top European competitions.

1 Introduction

Data analysis is becoming increasingly important in many professional sports [19].
Sports clubs are analyzing huge amounts of data in order to gain a competitive
advantage over their opposition. Soccer has been a relative late comer to this
trend. The classic statistics about a soccer match (e.g., that appear in boxscores
or are often reported on television) tend to be raw counts or fractions, such as the
ball possession percentage, number of shots on target or pass success percentage.
While interesting, these statistics do not give a complete picture of the match.
Moreover they can sometimes obscure important information. For example, the
raw number of shots a player took does not tell us about the relative difficulty or
quality of the attempts. Recently, research has focused on approaches that allow
for a deeper and more insightful analysis of soccer players [4]. One well-known
example is the expected goals statistic [9], which is now discussed on the popular
soccer talk show Match of the Day on BBC One.

A reoccurring concept when discussing soccer is a player’s style of play. While
both Messi and Ronaldo are great players, each one approaches the game in a
different way. Fans often form preferences for players based on his perceived
style. From a practical point of view, characterizing playing style is important
for professional clubs for three following reasons:

Scouting Soccer clubs can search the market more intelligently if they know the
type of player they are looking for and how well prospective targets match
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that type. Transfers are expensive, and clubs are always looking for bargains
and ways to mitigate risks in player recruitment.

Monitoring player development The coach can inspect the playing style of
a player in a human-interpretable player vector. If the player vector matches
the expectations of the coach, then the coach can monitor that this player
vector remains stable and unchanged. If the player vector does not match
the expectations of the coach, then he can give his player some pointers and
afterwards monitor how well the player is implementing the advice.

Match preparation Understanding the playing style of your opponent can
offer certain tactical advantages. The defenders of a team will wish to know
what type of attackers they are up against. Similarly, the attackers will be
interested in the playing style of the defenders they need to score against.

In this paper, we attempt to characterize a player’s playing style in an ob-
jective and data-driven manner based on analyzing event stream or play-by-play
match data. While playing style is a somewhat subjective concept, our working
definition is that a playing style manifests itself as where on the pitch a player
tends to perform specific actions with the ball. Our goal is to summarize this
playing style in a fixed-length player vector. Characterizing playing style from
event stream data is challenging as we have to reason about spatial locations,
discrete actions, and a variable number of events. We cope with these challenges
by overlaying a grid on the pitch and counting how often each player performs a
specific action in a given location. Then, to reduce the dimensionality we perform
non-negative matrix factorization. We repeat this for several types of actions.
Finally, we concatenate together a player’s compressed vectors for each action
type to construct his player vector. To evaluate the quality of our player vectors,
we propose a retrieval task. Given anonymous event data for a player, we show
that we can accurately predict the player’s true identify. Moreover, we show how
to interpret player vectors and present several qualitative use-cases related to
scouting and monitoring player development.

2 Data and Challenges

In this section, we first describe our data set and then highlight a number of
data science challenges encountered when analyzing this data.

2.1 Event Stream Data

Event stream data annotates the time and locations of specific events (e.g.,
passes, shots, dribbles) that occur in a match. This type of data is commer-
cially available from providers such as Opta, WyScout, and STATS. Our data
set consists of event stream data from 9155 matches in the five major soccer
competitions in Europe: the English Premier League, the German Bundesliga,
the Spanish Primera Division, the Italian Serie A and the French Ligue Un. Our
data spans almost all matches between the 2012/2013 and 2016/2017 seasons.
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Our match event stream data is encoded in the SPADL format [7], which
is a format for soccer match event stream data specifically designed to enable
automated data analysis. Some of its benefits are that (1) it focuses exclusively
on physical on-the-ball actions (e.g., events such as yellow cards and weather
changes are ignored), (2) it works with fixed attributes rather than optional in-
formation snippets (which are notoriously difficult to deal with in an automated
analysis pipeline), and (3) it unifies event stream data from different providers
into a common format. Each match is represented as a sequence of roughly 1650
player actions. Each action contains (among others) the following five attributes:

Type: The type of action (e.g., shot, tackle, pass),
Player: The player who performed the action,
Team: The player’s team,
StartLoc: The (x,y) location where the action started,
EndLoc: The (x,y) location where the action ended.

2.2 Data Science Challenges

Analyzing event stream data from soccer matches is challenging as soccer is
a highly dynamic game with many movements and interactions among players
across time and space. Concretely, the challenges include the following:

Challenge 1: Characterizing playing style involves coping with the spatial com-
ponent of the data, as the location where an action happens is important.
However, there is very little exact repetition in event stream data. That is,
the same player rarely performs the same action in the same location. Char-
acterizing playing style therefore requires us to intelligently generalize over
the location of actions.

Challenge 2: Actions have both discrete (e.g., Type, Player, Team) and con-
tinuous (e.g., StartLoc, EndLoc) attributes. Most machine learning and data
mining techniques prefer to work on either discrete or continuous features
exclusively and rarely work well on a mix of both.

Challenge 3: Most standard machine learning techniques require fixed-size fea-
ture vectors as their input and cannot natively handle a sequence or set of
data points of varying size.

Challenge 4: An important aspect of a player’s playing style is how he behaves
off the ball (e.g., how much does he run and work to regain the ball?).
However, this aspect is almost impossible to measure as action sequence
data only describes on-the-ball actions.

3 How to Define and Evaluate Playing Style

Characterizing a soccer player’s playing style requires reaching a consensus on
what constitutes a playing style. While this is an inherently subjective concept,
our hypothesis is that a player’s playing style arises from the interplay between
his skills and the tactics employed by the team. Hence, a style of play will
manifest itself in the player’s behavior during the game.
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Definition 1 (Playing style). A player’s playing style can be characterized by
his preferred area(s) on the field to occupy and which actions he tends to perform
in each of these locations.

In our work, we also make the following two assumptions.

Assumption 1: Most players exhibit differences in playing style and can be
differentiated on this. While it is possible that two players exhibit such a
similar playing style that they cannot be discerned from each other, this is
not the case for most pairs of players.

Assumption 2: A player’s playing style will not drastically change in a short
period of time. That is, in a sequence of consecutive games in a season,
each player will exhibit the same playing style. This seems justifiable for two
reasons. First, while players’ skills and playing style evolve over the course
of their career, these changes occur gradually rather than abruptly. Second,
while the tenure of managers, who influence tactics, do not tend to be overly
long in professional soccer, the majority of teams in a league do not change
manager mid season.

Based on this definition and these assumptions, any system that successfully
characterizes playing style from match event stream data can be used to retrieve
players from anonymized event stream data. This player retrieval task can be
more formally defined as follows:

Given: Anonymized event stream data describing actions of player p
Retrieve: The identity of player p

The quality of a system that characterizes playing style can be evaluated by
its performance on this player retrieval task, as this task measures how well a
system can recognize players and differentiate between them purely based on
their actions on the field.

In the next section, we describe our system for solving this task. In addition to
characterizing each player’s playing style, our system also allows human analysts
to interpret our representation of playing style and to automatically compare
players’ playing style on their similarity.

4 Building Player Vectors

In this section we address the following task:

Given: Event stream data describing actions of player p.
Build: A fixed-size player vector that characterizes player p’s playing style and

can be interpreted both by human analysts and machine learning systems.

At a high-level, our approach works as follows. First, we select relevant action
types for characterizing playing style.
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Second, for each player p and relevant action type t, we overlay a grid on
the field and count how many times player p performed actions of type t in each
grid cell. This transform helps address the first three challenges listed in Section
2 because it (1) captures the spatial component, (2) fuses discrete (action type)
with continuous (location) features in a unified representation, and (3) converts
a variable length set of actions into to a fixed size. We end up with one matrix
per player per action type.

Third, we reshape each matrix into a vector and group it together with all
other vectors of the same action type to form new, bigger matrices per action
type detailing all players’ playing style for that specific action type. We then
perform non-negative matrix factorization (NMF) to reduce the dimensionality
of these matrices. NMF automatically clusters together similar grid cells into a
coherent group, which is more informative and intuitive (e.g., for scouting) than
looking at individual grid cells where a player operates.

Finally, we construct a player vector for each player by concatenating his com-
pressed vectors of each action type. We also show how to compute the similarity
of player vectors (to be used in machine learning algorithms such as clustering
and nearest neighbors).

4.1 Selecting Relevant Action Types

Our hypothesis is that the type and location of the actions a player performs are
informative of that player’s playing style. Our event data contains 19 different
types of actions. However, we only consider offensive actions that are performed
during open play for two reasons.

First, defense is primarily about positioning, and often this involves pick-
ing a position to prevent certain actions from occuring. Hence, by definition,
characterizing defensive style requires off-the-ball location data, which we do
not have access to. Furthermore, most on-the-ball defensive actions (e.g. tack-
les, clearances) are usually performed out of necessity rather than because they
are indicative of a player’s playing style. One effect of this criterion is that all
keeper-specific actions are automatically ignored.

Second, the open play criteria means we exclude set piece actions (e.g., free-
kicks and throw-ins) from our analysis. Teams typically have set-piece specialists
(e.g., for free kicks). Similarly, actions like throw-ins are often performed by a
pre-defined position (e.g., fullbacks or wingers), so this is more an artefact of
position than style. Moreover, these actions can serve as quasi “primary keys” in
the player retrieval task, making the task a less effective proxy for characterizing
playing style. While we believe analyzing set pieces is extremely interesting and
important, a proper study of these actions would require a different type of
analysis than we perform in this paper.

When applying these two criteria, the remaining relevant action types are
passes, dribbles, crosses, and shots (Table 1).
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Table 1. Each action type must fit two criteria to be considered relevant for charac-
terizing playing style: it must be offensive and it must occur during open play. The
relevant action type are passes, dribbles, crosses, and shots.

Action type Frequency Offensive Open play

pass 53.1% X X
dribble 25.2% X X
clearance 3.8% X
throw in 2.8% X
interception 2.6% X
tackle 2.3% X
cross 1.8% X X
shot 1.5% X X
bad touch 1.4% X
foul 1.3% X
freekick short 1.3% X
keeper pick up 0.8% X
keeper save 0.8% X
corner crossed 0.6% X
freekick crossed 0.2% X
keeper claim 0.2% X
corner short 0.1% X
shot freekick 0.1% X
keeper punch 0.1% X

4.2 Constructing Heatmaps

A heatmap is a summary of the locations where player p performs actions of
type t. For each player and action type, we execute the following three steps.

1) Counting: We overlay a grid of size m × n on the soccer field. Next, we
select all of player p’s actions of type t in our data set. Per grid cell Xij ,
we count the number of actions that started in that cell. Hence, we have
transformed a variable-size set of actions to a fixed-size matrix X ∈ Nm×n

containing the raw counts per cell.
2) Normalizing: Two players p1 and p2 can have an identical playing style,

but if player p1 played more minutes than player p2, then player p1’s matrix
X will contain higher raw counts than the matrix of player p2. To combat
this, we normalize X such that each cell contains its count if p had played
90 minutes (1 game). For example, if player p played 1600 minutes in total
in our data set, then we construct the normalized matrix X ′ = 90

1600X.
3) Smoothing: We would expect some spatial coherence, or smoothness, in the

locations where the actions were performed. However, this coherence can be
disrupted by laying a high granularity grid (i.e., high values for parameters
m and n) over the pitch as the boundaries between grid cells are abrupt
and somewhat arbitrary. Hence, the counts for nearby cells may exhibit
more variance than they should. To promote smoothness in the counts of
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nearby cells, a Gaussian blur is applied to matrix X ′. A Gaussian blur is a
standard image processing technique [21] that involves convolving X ′ with
a Gaussian function. Specifically, the value of each cell in X ′ is replaced
by a weighted average of itself and its neighborhood, leading to the blurred
matrix X ′′ ∈ Rm×n

+ .

X ′′ is the heatmap detailing where player p performs actions of type t (Figure
1b). For some action types, e.g., passes, we are not just interested in their start
locations, but also in their end locations. For these action types, we construct
separate heatmaps X ′′start and X ′′end using respectively the start and end locations
of the actions in the counting step.

(a) The raw shot heatmap
obtained by overlaying a
grid and counting shot lo-
cations.

(b) The smoothed shot
heatmap obtained after
normalizing and smoothing
the raw shot heatmap.

(c) The same shot heatmap
reconstructed from a
length-4 feature vector.

Fig. 1. Example of a heatmap detailing the shot playing style of Riyad Mahrez, winger
at Leicester City in the 2016/2017 season.

4.3 Compressing Heatmaps to Vectors

The goal is to capture the information available in a heatmap (i.e., the locations
where a player p performs actions of type t) in a small vector. We detail our
approach for compressing heatmaps to vectors per action type t.

First, we reshape each heatmap X ′′ to a 1-dimensional vector x of length
mn. In the case of action types where we are interested in both the start and
end location, we reshape the heatmaps X ′′start and X ′′end to vectors xstart and
xend and concatenate them in a single 1-dimensional vector x of length 2mn.
More generally, let s = 1 if we are only interested in the start location of an
action type and s = 2 if we are interested in both the start and end location of
an action type. The length of x is then smn.

We then construct the matrix M = [x0x1 . . . xl] that contains as columns
the reshaped heatmaps of all l players in our data set for action type t. Next,
we compress matrix M by applying non-negative matrix factorization (NMF),
which is a form of principal component analysis where the resulting components
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contain only positive numbers. This results in two matrices W and H such that:

M ≈WH, (1)

where M ∈ Rsmn×l
+ , W ∈ Rsmn×k

+ , and H ∈ Rk×l
+ . Here, k is a user-defined

parameter that refers to the number of principal components for action type t.
The columns of W are the principal components that represent basic spa-

tial groups of action type t. These principal components can be visualized as
heatmaps (Figure 2). The rows of H are the small vectors that are the com-
pressed versions of the heatmaps in M . In other words, if the reshaped heatmap
x was the i-th column in matrix M , then the i-th row of H is its compressed
vector. Each compressed vector can be visualized by multiplying it with the
principal component matrix W . The result of this multiplication is a heatmap
similar to the original, but reconstructed from only k features (Figure 1). In
addition, each feature in a compressed vector is interpretable in the sense that
its numeric value quantifies how often the player executes actions of type t with
locations in the spatial group of a specific principal component.

4.4 Assembling Player Vectors

The player vector v of a player p is the concatenation of his compressed vectors
for the relevant action types: passes, dribbles, crosses, and shots. The total length
of a player vector v is equal to kpass + kdribble + kcross + kshot where kt is the
number of principal components chosen to compress heatmaps of action type t.
In this paper, we set kt as the minimal number of components needed to explain
70% of the variance in the heatmaps of action type t. This parameter setting
was empirically found to work well because of the high variability of players’
positions in their actions (see Challenge 1 in Section 2). Ignoring 30% of the
variance allows us to summarize a player’s playstyle only by his dominant regions
on the field rather than model every position on the field he ever occupied. This
design choice lead us to use 4 shot components, 4 cross components, 5 dribble
components, and 5 pass components, adding up to form length-18 player vectors.

We can now quantify two players’ playing style similarity by computing the
Manhattan distance between their player vectors. Manhattan distance works well
because the value of each feature in each player vector is a meaningful quantity.
The Manhattan distance does not alter this meaning and simply computes the
sum of the absolute differences per feature, unlike Euclidean distance which
tends to unfairly penalize large differences in a few features. We also empirically
confirm that the Manhattan distance works best in Section 5.4.

5 Experiments

Evaluating our method is challenging as no objective ground truth exists for
characterizing playing style. Therefore our experiments address three main ques-
tions: (1) providing intuitions into what information our player vectors capture,
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(2) demonstrating how our approach could be used for scouting and monitor-
ing player development by substantiating a number of claims in popular media
about professional soccer players, and (3) measuring our performance at the
player retrieval task, which we argue in Section 3 is an effective proxy for how
well our approach characterizes playing style.

5.1 Intuition

Figure 2 illustrates all 18 components (4 shots, 4 crosses, 5 dribbles, 5 passes)
corresponding to the weights in our length-18 player vectors. The shot, cross,
and dribble components only describe where groups of actions start, while the
pass components describe where groups of passes start and end. This is because
the end locations of shots, crosses, and dribbles are not informative of a player’s
playing style. Shots and crosses all end in roughly the same location, while
dribbles are usually short and vary in direction such that there is no noticeable
difference between their start and end heatmaps.

Figure 3 shows the player vectors of four archetypical players in their 2016/2017
season.

Robert Lewandowski: Striker at Bayern Munich. He shows high weights for
three components: C2: Close shot , C13: Center dribble, and C14: Center
pass. These are the actions central strikers are expected to focus on.

Jesus Navas: Winger at Manchester City. He shows high weights for three
components that are typical of an offensive right winger: C8: Right backline
cross, C12: Right flank dribble, C18: Right flank pass.

Kevin De Bruyne: Midfielder at Manchester City. De Bruyne’s player vec-
tor seems less pronounced than the others at first glance, but is actually
very informative. First, we can deduce that De Bruyne plays mostly on the
opponent’s half due to the non-existent weights for components C9/C11:
Left/Right back dribble and C15/C17: Left/Right back to flank pass. Second,
his player vector shows similar values for (almost) all mirroring components
(e.g., C16/C18: Left/Right flank pass). The exception is shots: his weight
for C4: Right shot is high, while almost non-existent for C3: Left shot . De
Bruyne’s player vector suggests that he is an offensive central midfielder
with no preference towards the left or the right when it comes to passing,
dribbling or crossing, but attempts to score only from the right.

Sergio Ramos: Defender at Real Madrid. Two of his components stand out:
C9: Left back dribble and C15: Left back to flank pass. While less notable
than his defensive components, Ramos shows an unusually high weight for
C2: Close shot . This is because Ramos often attempts to head the ball in
the goal at corner kicks, as proven by his nine goals in the 2016/2017 season
headed in from corner kicks. Ramos is a left-most central defender with a
very defensive playing style, except when it comes to corners.

Player vectors can characterize playing style in an intuitive manner that can
make sense to domain experts (e.g., scouts and coaches), yet the interpretable
components upon which the player vectors are built are constructed in a com-
pletely data-driven manner.
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(1) Far shot (2) Close shot (3) Left shot (4) Right shot

(5) L. flank cross (6) L. backline cross (7) R. flank cross (8) R. backline cross

(9) L. back dribble (10) L. flank dribble (11) R. back dribble (12) R. flank dribble

(13) Center dribble (14) Center pass

(15) Left back to flank pass (16) Left flank pass

(17) Right back to flank pass (18) Right flank pass

Fig. 2. The 18 components of our player vectors constructed by compressing heatmaps
of shots (1-4), crosses (5-8), dribbles (9-13), and passes (14-18) with non-negative
matrix factorization.
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Robert Lewandowski

(a) Robert Lewandowski, central striker
at Bayern Munich, shows high weights for
C2: Close shot , C13: Center dribble, and
C14: Center pass.
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Jesus Navas

(b) Jesus Navas, right winger at Manch-
ester City, shows high weights for C8:
Right backline cross, C12: Right flank
dribble, and C18: Right flank pass.

1 2 3 4 5 6 7 8 9 101112131415161718
Component

0.0

0.2

0.4

0.6

W
ei

gh
t

Kevin De Bruyne

(c) Kevin De Bruyne, central offensive
midfielder at Manchester City, shows high
weights for all offensive components, fa-
voring neither left nor right.
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Sergio Ramos

(d) Sergio Ramos, left-most central de-
fender at Real Madrid, shows high weights
for C9: Left back dribble and C15: Left
back to flank pass.

Fig. 3. Visualized player vectors for an archetypical (a) striker, (b) winger, (c) mid-
fielder, and (d) defender in the 2016/2017 season. The boxplots in the background show
the distribution of the weights per component.

5.2 Scouting

We investigate three claims in popular media about similar players. We computed
and compared player vectors for all 1480 players who played at least 900 minutes
in the 2016/2017 season of the five major soccer competitions in Europe. Lionel
Messi is regarded by many as the best soccer player in the world. One player who
has been deemed to play similarly to Messi is Paulo Dybala, a fellow Argentinian
attacker [23, 13]. When ranked using our player vectors, Dybala is the 2nd most
similar player (out of 1479) to Lionel Messi. Idrissa Gueye (midfielder at Everton
FC) is often hailed as the new N’golo Kante (midfielder at Chelsea FC) by many
journalists [1, 15, 3]. Gueye is the 2nd most similar player to Kante in our data
set. Aymeric Laporte is a 24-year-old defender playing for Manchester City FC,
who was deemed to be the long-term replacement for 33-year-old Real Madrid
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defender Sergio Ramos [18, 5], who was named best defender in the world in 2017
by UEFA.1 Laporte is the 29th most similar player to Ramos using our player
vectors. While 29th out of 1479 is not bad, this example does illustrate that our
approach is better at characterizing offensive playing style than defensive playing
style, as defensive playing style is often more about positioning than on-the-ball
actions (see Challenge 4 in Section 2).

5.3 Monitoring Player Development

Journalists agree that Cristiano Ronaldo (ex-Real Madrid) evolved from his role
as a left winger to a role as a central striker [22, 20]. Our player vectors capture
this transition (Figure 4). Ronaldo’s most common shot types in the 2012/2013
season were C1: Far shot and C3: Left shot . In the 2016/2017 season however,
his shot playing style is completely different with C2: Close shot as his most
common shot type and no significant difference in output between C3: Left shot
and C4: Right shot . Ronaldo also executed fewer crosses, dribbles and passes
in the 2016/2017 season (see the drops in components 5-18), focusing more on
finishing scoring chances than setting them up.

Jordan Henderson is a midfielder at Liverpool. In the 2016/2017 season,
coach Jürgen Klopp instructed Henderson to play more defensively, transitioning
his playing style from a box-to-box midfielder to a defensive midfielder [25, 17].
When comparing Henderson’s 2015/2016 player vector to his 2016/2017 player
vector (Figure 4), we notice that his output in terms of passes and dribbles
(components 9-18) has significantly increased, while his output in terms of shots
and crosses has completely disappeared (components 1-8).

5.4 Player Retrieval from Anonymized Match Event Stream Data

Our approach has many parameters: (a) the size of the grid to construct the
heatmaps (50× 50), (b) the algorithm to smooth the heatmaps (Gaussian blur),
(c) the algorithm to compress the heatmaps (non-negative matrix factorization),
(d) the number of components to use (4 shots, 4 crosses, 5 dribbles, and 5 passes),
and (e) the distance function to compare the player vectors (Manhattan). Nor-
mally we would have no experimental way to tune these parameters as playing
style is a subjective concept with no ground truth. However, as explained in
Section 3, we can use player retrieval from anonymized match event stream data
as a proxy for characterizing playing style.

We solve the player retrieval task as follows. First, we construct a set of
labeled player vectors V using a training event stream data set that has not
been anonymized. Second, we obtain a set of anonymous actions performed by a
target player pt and construct a player vector vt based on these actions. Third,
we compare vt to all v ∈ V and construct a rank-ordered list of the most similar
players to pt. The quality of this ranking is then the position of the unknown
player in the ranking. In other words, if most players appear at the top of their

1 http://www.uefa.com/insideuefa/awards/previous-winners/newsid=2495000.html
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(a) Ronaldo evolved from a left winger in
the 2012/2013 season to a central striker
in the 2016/2017 season. Note the drop of
C1: Far shot and C3: Left shot and the
rise of C2: Close shot and C4: Right shot .
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Henderson 2015/2016
Henderson 2016/2017
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(b) Henderson transitioned to a more de-
fensive playing style after the 2015/2016
season. Note the almost complete disap-
pearance of shots and crosses (components
1-8) and the rise of passes and dribbles
(components 9-18).

Fig. 4. Player vectors illustrating the development of (a) Cristiano Ronaldo, former
striker at Real Madrid, and (b) Jordan Henderson, midfielder at Liverpool.
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own rankings, then we have successfully characterized playing style. If most
players do not appear near the top of their own rankings, then we have failed.

To illustrate this idea, we provide the results of an experiment to test whether
Manhattan distance or Euclidean distance is the best distance function for com-
paring player vectors in Table 2. In our experiment, our training data was la-
beled event stream data from season 2015/2016 of the five top soccer compe-
titions in Europe and the test data was anonymized event stream data from
season 2016/2017 of the same competitions. We only considered players that
have played 900 minutes in the same team in both seasons. This left us with 741
anonymized players in the test data which we de-anonymized using 741 labeled
players in the training data.

Table 2. Top-k results and mean reciprocal rank (MRR) when trying to retrieve 741
players from anonymized event stream data of season 2016/2017 using labeled event
stream data from season 2015/2016.

Distance function Top-1 Top-3 Top-5 Top-10 MRR

Manhattan distance 38.2% 49.8% 54.9% 64.4% 0.469
Euclidean distance 33.0% 47.0% 52.9% 61.8% 0.429

The Manhattan distance outperforms the Euclidean distance at retrieving
players from anonymized event stream data. We can successfully retrieve 38.2%
of all players with only one attempt and retrieve 64.4% of all players in the top-
10 of our rankings. Hence, we conclude that Manhattan distance is the better
distance function to use to compare players’ playing style.

6 Related Work

Danneels et al. [6] predict a player’s position (i.e., attacker, midfielder, defender)
based on their actions. While similar to our research, our goal and approach is
more broad and ambitious, as our player vectors are much more detailed than
only three distinct labels. Gyarmati et al. [14] construct movement vectors to
characterize a player by his movement on the field. Van Gool et al. [24] analyze
the playing style of teams instead of players. Their approach is different from
ours, but their goal is similar as they also try to capture a subjective concept like
playing style in a more objective and data-driven way. STATS introduced STATS
Playing Styles [11], which are eight different styles (e.g., fast tempo, direct play,
counter attack) teams use to create shooting opportunities. Fernandez et al. [10]
also categorize different styles of play for teams in professional soccer.

Pappalardo et al. [16] and Decroos et al. [7] evaluate a player’s quality of
performance. Bransen et al. [2] measure players’ resilience to mental pressure.
The biggest difference between these works and ours is that our paper aims to
characterize a player’s playing style, with less emphasis on the player’s quality
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of play. One way we could improve our approach is to expand our player vectors
with features that capture the tactics a player is involved in (e.g. [8]).

In other sports, Franks et al. [12] used spatial information to categorize shots
in professional basketball. In this work, data from the NBA was collected and
analyzed using non-negative matrix factorization (NMF). This paper was a huge
influence on our work, as our approach on soccer event data is largely inspired
by their approach on basketball event data.

7 Conclusion

Objectively characterizing the playing style of professional soccer players has
important applications in scouting, player development monitoring, and match
preparation. We showed how to construct player vectors by transforming sets of
actions from match event stream data to fixed-size players vectors using non-
negative matrix factorization. These player vectors offer a complete view of a
player’s playing style (within the limits of the data source), are constructed in a
purely data-driven manner, are human-interpretable and can be used in machine
learning systems such as clustering and nearest neighbor analysis.
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