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Abstract. Existing cluster validity indices often possess a similar bias
as the clustering algorithm they were introduced for, e.g. to determine
the optimal number of clusters. We suggest an efficient and holistic as-
sessment of the structure discovery capabilities of clustering algorithms
based on three criteria. We determine the robustness or stability of clus-
ter assignments and interpret it as the confidence of the clustering algo-
rithm in its result. This information is then used to label the data and
evaluate the consistency of the stability-assessment with the notion of
a cluster as an area of dense and separated data. The resulting crite-
ria of stability, structure and consistency provide interpretable means to
judge the capabilities of clustering algorithms without the typical biases
of prominent indices, including the judgment of a clustering tendency.

1 Introduction

Clustering algorithms are used in various settings of exploratory data analysis,
pattern recognition, etc. They are often used as a tool in a longer preprocessing
pipeline to support some other goal than just clustering the data for its own sake
(e.g. classification, discretization, compression). The best clustering algorithm is
then simply the one that supports the original goal best, so we may only be in
charge of providing an (external) evaluation of the surrounding task.

We exclude such objectives in this paper, but concentrate on those cases
where clustering itself is the core objective. We thus understand the clustering
task in a narrow sense as structure discovery: Does the dataset itself suggest a
partitioning into multiple, separated groups? This would be a valuable result in
an explorative analysis of new data, for instance, it would suggest to explore and
compare the partitions individually. In the context of, say, customer relationship
management we would not ask if it is possible to subdivide all customers into
groups, which seems always possible in one way or another, but whether the data
provides evidence that customers naturally decompose in distinctive groups. This
is also reflected by widely used definitions of clustering, where clusters are well-
separated groups that define a compact or dense area of data.

From a structure discovery perspective, a clustering algorithm claims that it
has discovered structure in the dataset. So the research question in this paper
is how to assess the capabilities of the various existing clustering algorithms in
this regard. Although the large number of clustering algorithms is flanked by
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an impressive number of validity indices, we argue that they are usually not
suited for a fair comparison across many different clustering algorithms with
respect to their structure discovery capabilities. The main contribution of this
paper is a holistic assessment of the structure discovery capabilities of clustering
algorithms. We determine the robustness or stability of cluster assignments and
interpret it as the confidence of the clustering algorithm in its result. This infor-
mation is then used to label the data and evaluate its consistency with the notion
of a cluster as an area of dense and separated data. This approach allows us to
apply methods that are otherwise restricted to supervised learning. The three
criteria of stability, discovered structure and consistency provide better means to
judge about the capabilities of clustering algorithms without the typical biases
of prominent indices, including the judgment of a clustering tendency.

2 Related Work

There is a great variety of clustering algorithms, covered in various textbooks,
e.g. [1,8,13]. We do not focus on any particular type of clustering algorithm, but
will use a spectrum of well-known algorithms (k-means, hierarchical clustering,
mean shift, dbscan) as representatives. We assume the reader is familiar with
these popular algorithms. They all share – more or less – the same goal, but
vary in the computational approach and bias. The review [12] advises to choose
an algorithm based on “the manner in which clusters are formed”, which clearly
demonstrates the dilemma we face if clustering is intended as an explorative
technique and not much is known about the data yet.

With so many algorithms at hand, it seems natural to try them all on new
data. This leads to the question, which result we should trust most. Some suggest
to use external information (class labels), which might be the right approach if
classification is the ultimate goal. With explorative structure discovery in mind
we agree “that it is an inherent flaw in design of clustering algorithms if the
researcher designing the algorithm evaluates it only w.r.t. the class labels of
classification datasets” [9], because the class labels do not necessarily respect
the typical properties of clusters, such as compactness and separation. But there
are also many cluster validity measures that consider internal information only
(rather than external class labels). Recent extensive studies [2,4] compare 30
such indices and among the best-performing indices were Silhouette [18], Davies-
Bouldin (DB) [5], Calinski-Harabasz (CH) [3], and SDBw [11]. The study [19]
uses 10 external and 3 internal measures (Silhouette [18], Dunn [7], DB [5]).

Many internal measures were introduced to overcome a parameter selection
problem. The k-means algorithm, for instance, requires the number of clusters
to be specified in advance, so the algorithm is run for multiple values and the
validity index identifies the best choice. This leads to measures particularly tai-
lored to single clustering algorithms (e.g. [17]). For such a purpose a measure
works best, if it adopts the bias of the considered clustering algorithm. But if
we intend to compare the results of various clustering algorithms with different
biases, an evaluation based on such a measure would not be impartial (cf. [16]).
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While the literature agrees on the objectives of clustering on an abstract level
(compactness and separation), the exact interpretation may vary considerably.
K-means was designed with spherical clusters in mind, so the mean distance to
the cluster center is an appropriate way of measuring compactness, but arbitrary
cluster shapes will not be evaluated adequately. Sixteen out of the 30 cluster
validity indices covered in [2], however, include the notion of a cluster centroid,
which represents a bias on the cluster shape. Other examples for biases on the
shape include the use of a cluster diameter or an average within-cluster-distance.

To identify a natural grouping, clusters need to be separated. But how im-
portant is the actual distance between clusters? Some measures use a ratio of
intra-cluster and inter-cluster distance. While meaningful for small ratios, above
some threshold (e.g. > 3) we consider clusters as being well-separated, regardless
of the actual ratio. Incorporating the ratio in the measure may overemphasize
the separation of clusters. Yet other measures incorporate concepts like the single
nearest neighbor (e.g. the Dunn index). They are used, for instance, to measure
the gap between two clusters (closest point of a different cluster). As many par-
titional clustering algorithms exhaustively assign all data points to some cluster,
including noise and outliers, such measures are heavily affected by noisy datasets.
The measure assumes a noise-free void between the clusters, which also repre-
sents a bias. These problems underline that the results of many cluster validity
indices for two different algorithms are difficult to interpret, to say the least. A
worse validity index cannot be unambiguously attributed to a worse clustering
result, it might as well be caused by a bias-mismatch.

Many studies have applied algorithms repeatedly to accumulate evidence of
multiple clusterings to find a better partition. In [10] the accumulated evidence
was used to compose new similarity data to which yet another clustering algo-
rithm may be applied. Using (only) the stability of the obtained results as a
validity measure was proposed in [15]. The stability of k-means clustering was
also examined in [14] to pick the correct number of k-means clusters, but there
it was observed that the stability correlated well with the accuracy of (ensem-
ble) clustering for some datasets – but poorly with other datasets. In this work
we are neither interested in improving partitions nor in parameter selection for
a particular clustering algorithm, but to directly compare the performance of
different clustering algorithms. This includes but is not limited to the stability
of the results, as we will demonstrate that stability alone is not sufficient.

3 Threefold Assessment of Structure Discovery

We assume a dataset D of size n = |D| is given. We denote P = {C1, . . . , Cc}
as a partition of D of size c if ∀1 ≤ i, j ≤ c: Ci ⊆ D, Ci ∩ Cj = ∅ and⋃

i Ci ⊆ D. We use the abbreviation
⋃
P for

⋃c
i=1 Ci. Note that we do not

require
⋃

i Ci = D: some algorithms (e.g. dbscan) mark data as outliers. We also
remove singleton clusters as they also represent outliers.

A clustering algorithm delivers a partition of D of size c, where the c groups
are usually called clusters. We use the notation CP

x for any x ∈ D to refer to
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the unique cluster Cj ∈ P with x ∈ Cj . For illustrative purposes we use R im-
plementations of hierarchical clustering (single-, complete- and average-linkage),
k-means, dbscan and meanshift with varying parameters (e.g. 2-7 clusters). For
the hierarchical clustering we obtain the final clusters in a rather naive way by
cutting the tree to get the intended number of subtrees (clusters).

3.1 Point Stability

Lacking data from the full population, clustering algorithms are typically exe-
cuted on a (random) sample, so there is always some uncertainty in the selection
of the data involved. We can check an obtained partition to see whether x and
y belong to the same cluster, but we actually want to know if x and y would
belong to the same cluster in general, that is, if the full population was clustered
rather than this particular data sample only.

We have only access to a partition P obtained from our algorithm by applying
it to sample D. We would like to know, for any x ∈ D, how likely other objects
y, co-clustered with x in P, belong to the same cluster if we had a different
sample. Assuming the existence of a ground truth partition T for a moment, we
are interested, for a given x, in

P (y ∈ CT
x |y ∈ CP

x ) =
|(CT

x ∩ CP
x )\{x}|

|CP
x \{x}|

=
|CT

x ∩ CP
x | − 1

|CP
x | − 1

(1)

This conditional probability characterizes the stability of a single data point as it
is perceived by the selected clustering algorithm. A probability of 1 would mean
that all co-grouped data of x in P would actually co-group identically in the true
partition. As there is no chance of knowing T and even P depends on our sample
D, we estimate this probability by executing the same algorithm multiple times
on different subsets of D: We may then estimate how likely a point y belongs to
the same cluster as x (in any other partition), given we observed that x and y
co-group in one given partition.

Definition 1 (Point Stability). Given a dataset D and a clustering algorithm.
Let k,m ∈ N. Just as in k-fold cross-validation, we use a random partition
R = {R1, . . . , Rk} of D with equal-sized groups and define (training) datasets
Di = D\Ri, 1 ≤ i ≤ k. This process is repeated m times with shuffled data, such
that we obtain a set M of k · m different partitions by applying the clustering
algorithm to the resp. Di. We define the (k,m)-point stability of x ∈ D as

PS(x) :=
1

|M2
x |

∑
(P,Q)∈M2

x

P (y ∈ CQ
x |y ∈ CP

x ) =
1

|M2
x |

∑
(P,Q)∈M2

x

|CQ
x ∩ CP

x | − 1

|CP
x | − 1

where M2
x is defined as M2

x := {(P,Q) | P ∈M,Q ∈M,P 6= Q, x ∈ P, x ∈ Q}.

Having removed singleton clusters (cf. page 3), we will not face a division by
zero. Throughout the paper we use k = m = 5, which yields 25 partitions and
25 ·24 = 600 partition comparisons. The point stability is already an informative
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Fig. 1. Simple dataset with two clusters (left) and point stability plot (right) for all
considered clustering algorithms (color-coded). Thick lines are discussed in the text.

tool if all values are sorted and plotted as shown in Fig. 1. For the sample data
on the left, each line in the point stability plot on the right corresponds to one
algorithm/parameter setting. The color indicates the clustering algorithm, the
few thick lines are from top to bottom: single-linkage (c = 2), almost identical
to mean-shift (threshold 0.1), k-means (c = 2), complete-linkage (c = 2), and
average-linkage (c = 6). About 50 data objects receive a point stability close
to 1 from many algorithms, which means that they get clustered reliably. They
correspond to the small cluster on the right. The remaining objects receive quite
different stability values. As the true number of clusters is 2, the large cluster is
splitted arbitrarily depending on the chosen subsample for c > 2. Thus data pairs
get grouped differently from run to run and their stability decreases. But even
when the clustering algorithms were asked for 2 clusters, there is still considerable
variance in the stability curves. The stability of the highlighted meanshift and
single-linkage (top curves) is clearly superior over k-means and average-linkage,
which respond more sensitive to changes in the sample.

3.2 Stably Discovered Structure

In Fig. 1 two algorithms achieved consistently high stability values for almost
all data objects, but for a completely different reason. As already mentioned,
the hierarchical single-linkage algorithm was used in a naive way: the hierarchy
was cut off to obtain a certain number of clusters. In the particular case of
Fig. 1(left), which contains noisy data points, the first few clusters are typically
singleton clusters that correspond to outliers. The second cluster then consists
of all remaining data and it is not surprising to achieve high stability values
for all of them. In contrast, the results of the meanshift clustering consistently
discovered both clusters in Fig. 1. Stability alone is thus not sufficient, we have
to measure the amount of actually discovered structure.

Definition 2 (Stable Partition). We define the largest set DS ⊆ D of data
objects that are robustly clustered by the clustering algorithm (i.e. have a point
stability of 1) as the stably clustered data. From all obtained partitions Pi ∈
M we can thus identify a single stable partition PS which (1) consists of
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all stably clustered data (
⋃
PS = DS) and (2) is consistent with all partitions

(∀Pi : ∀C ∈ Pi : ∃Cs ∈ PS : C ∩DS = CS)

To identify PS we have to keep in mind that, although stability is measured
object-wise, an unstable object degrades the stability of all data objects in the
same cluster. In other words, removing one instable object will increase the sta-
bility of all remaining objects in a cluster. Therefore we identify DS by ordering
all objects (increasingly) by their point stability and successively removing ob-
jects until all remaining points reach a stability of 1. Each removal increases the
stability of all objects in Cx, so DS is usually much larger than the set of objects
that receive values close to 1 in the point stability plots of Fig. 1. We will discuss
how to compute DS efficiently in section 3.5.

So we define the fraction of stable data |DS |/|D| as the stability index,
which serves as a first quality indicator. The higher the stability index, the more
data was clustered reliably. But we have seen that the number of data objects
alone is not sufficient since all stable objects may belong to a single cluster (cf.
single-linkage example): Without any (sub)structure being discovered, a high
stability is pointless. We may add the number of clusters as a second quality in-
dicator, but this would not take the cluster sizes into account. Instead we use the
partition entropy of the stable partition as a (discovered) structure index:
In an information-theoretic sense, entropy denotes the amount of information in
a transmitted message. The message consists of the (reliably) assigned clusters
to each data object. The higher the amount of information in the cluster as-
signments, the more structure has been discovered. Then three clusters receive a
higher structure value than two clusters, two equal sized clusters receive a higher
value than a 95%:5% cluster constellation (less structured).

Definition 3 (Partition Entropy). Given a partition P = {C1, . . . , Cn}, by

partition entropy we refer to PE(P) = −
∑n

i=1 pi log pi where pi = |Ci|
|
⋃

P| .

Fig. 2(left) shows which data was recognized as stable for a k-means clustering
(c = 2) and Fig. 2(middle) for average-linkage clustering (c = 3). The stably
clustered data is shown as black crosses, the instably clustered data as red circles.
For k-means we see that all red points lie half way between both cluster centers,
the right cluster contains more data than appropriate (due to k-means’ bias
towards equal-sized clusters). For the average-linkage example the number of
clusters was not ideal (c = 3 instead of 2): depending on the current subsample,
the surplus middle cluster varied in location and size, leading to a large portion of
instably clustered data. Compared to k-means, fewer data was stably clustered
and the structure index is similar as the stable partition also consists of two
clusters only – despite its initialization with c = 3.

All algorithms can be compared in the scatterplot of the stability index and
the structure index as shown in Fig. 2(right). A single point corresponds to the
evaluation of a clustering algorithm (with fixed parameters). The horizontal line
indicates the entropy for 2 equal-sized clusters. All results at the bottom of the
Fig. correspond to algorithms, where the fraction of stable data consisted of
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Fig. 2. Stably clustered data (black), instable portion in red for k-means (c=2) and
average-linkage (c=3). Right: Entropy and size of stable partition for all algorithms.

a single cluster only: the algorithms did not identify any substructure reliably.
Another group of results aligns somewhat below the line ’entropy of 1’. From our
background information about the dataset (two unequal cluster sizes) we expect
the best result to be near this line but not to reach it, because the clusters are
not of the same size. Only the stable partition of the meanshift algorithm covers
almost 100% of the data and reliably detects both clusters. The second best
result comes from k-means, which has a higher structure index but less stably
clustered data (lower stability index). From the plot we can read immediately,
that the meanshift and k-means runs are superior to all other results wrt. to
stability and structure index. The inappropriate assignment of data from the
“left true cluster” to the “right k-means cluster” is, however, not yet reflected.

3.3 Compactness and Separation

So far we have evaluated the resulting partitions only, but did not use any
distance information. The example of Fig. 2(left) shows that information from
the partition alone is not sufficient. K-means claims two clusters of roughly the
same size, but cuts off some data from the large cluster and disregards the
cluster separation. This will be addressed by a third criterion. We will not make
assumptions about the shape of the clusters as this would bias our measure
towards clustering algorithms with the same assumption.

We have to clarify our notion of compactness and separation first. Clusters
correspond to dense groups of data objects, so cluster members should be iden-
tifiable by means of some level of data density. As a simple indicator of density
we use the following distance dk(x) to the kth neighbor:

Definition 4 (kth nearest neighbor). By dk(x) = maxy∈Nk(x) ‖x−y‖ we de-

note the distance to the kth nearest neighbor of x in D, where Nk(x) ⊆ D is the k-
neighborhood around x such that ∀y ∈ D\Nk(x) : ‖x−y‖ ≥ dk(x) and |Nk(x)| =
k + 1.

We intend to use dk(x) as a score that indicates the predisposition of x
to belong to a cluster. If a data object has k neighbors within some (small)
threshold distance, we may speak of a compact, densely packed area, which
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Table 1. Consistency of ’notion of compactness’ (density-based, dk ≤ %) and ’well-
clustered’ (partition-based, pure and stable)

stably clustered instably clustered
and pure or impure

within cluster: dk ≤ % TP FP
outside cluster: dk > % FN TN

precision = TP
TP+FP

recall = TP
TP+FN

therefore qualifies for cluster membership. Being part of a cluster, we expect
objects in the neighborhood to belong to the same cluster. We do not expect
data from other clusters in the neighborhood (this would violate the separation).
Furthermore, we expect from a good clustering algorithm to stably identify a
cluster, that is, x as well as its neighbors (but not any instably clustered data).

For any x ∈ D we now have two sources of information: (i) Based on the
distance, we infer a clustering tendency from dk(x) ≤ % for some density thresh-
old %. (ii) From our stability analysis we know whether our clustering algorithm
perceives x as part of a stable cluster. For a good clustering, both information
about x should be consistent: dense data should be clustered stably. So the third
criterion measures how well both views match. Are the objects, that likely be-
long to clusters, stably clustered and well separated? To measure the degree of
consistency we consider a contingency table shown in Table 1: If a data object
qualifies for cluster membership (dk ≤ %), and the algorithm clustered it stably
and with pure neighborhood, the compactness (small dk distance) and the sepa-
ration (stable, pure neighborhood) are consistent (true positive). If, however, the
object was not clustered stably or the neighborhood is not pure, we recognize a
false positive.

The consistency depends on %: For a small threshold, only the dense center
of a cluster may meet the condition dk ≤ %. Those points are likely to get stably
clustered (TP, increases precision), but many other stably-clustered but less
dense areas will be missed (FN, low recall). Data towards the border of a cluster
may require a larger threshold % to accept them as ’dense enough to be part of a
cluster’. With % getting larger, the risk of including data from other clusters in
the neighborhood increases. For non-separated clusters, an increasing recall may
therefore lead to a drop in precision. The overall consistency of the partition
with the data density is thus well-captured by means of a precision-recall graph,
cf. Fig. 3(left) for the data set from Fig. 1. We expect a curve of a reasonable run
to start in the top left corner. If there is a threshold % that separates all clusters
from another, we reach 100% recall with 100% precision (line close to the ideal
line (0,1)-(1,1)). The earlier the curve drops from the ideal line, the worse the
consistency of the clusters (not separated or not stably clustered). We may also
observe curves starting at (0,0), which indicates that the clustering algorithm
did not even succeed to stably cluster the regions with the highest data density.
This may happen if c was chosen too high and multiple prototypes compete for
a single true cluster: The true cluster is split into multiple parts and its core
data gets assigned to alternate clusters, which renders them instable.
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Fig. 3. Precision-Recall graph for data set twoclusters and its SSC-plot.

As the optimal curve in such a graph is a constant line of precision 1, the
area under the precision-recall graph serves as the third consistency index.
The final SSC-plot (stability, structure, consistency) shows the relative size
of the stable dataset on the x-axis, the consistency (area under precision-recall
curve) on the y-axis and the structure (entropy of the stable partition) by the dot
size and its color, cf. Fig. 3(right). Optimal results lie in the upper right corner
(all data stably clustered, highly consistent). Several runs lie in this corner in
Fig. 3(right), but only one meanshift result discovered a non-trivial structure.
The second best result is still k-means (for 2 clusters), but with lower stability
and consistency values, the latter reflects the missing separation in Fig. 2(left).

3.4 Ranking

The SSC-plot offers a holistic view on the algorithms performance. In a particular
context there might be a focus on one of the measures stability, structure, or
consistency. If considered as a multicriteria problem, there might be no single
best solution, so the Pareto front has to be explored. When a unique ranking
is needed to select the best algorithm automatically, we suggest to sum how
many other runs are dominated by a given run in the three criteria individually.
In our running example the two highest scores correspond to the best solutions
identified in the discussion: the meanshift run gets a score of 81 and the k-means
a score of 77 with an average score of 41.6. (With 34 runs in the experiment the
theoretical maximum is 33 for each index, 99 in total for all three indices.)

3.5 Efficient Calculation of a p% Stable Partition

In this section we discuss the identification of a partition with an average sta-
bility of p%. Calculating a single point stability PS(x) for data object x is
straightforward: For r partitions we carry out r · (r − 1) comparisons; for each
comparison a contingency table of size c×c is constructed in O(n), where c is the
number of clusters. The contingency tables contain the cluster intersections of
definition 1. We arrive at a complexity of O(r2 × n). We calculate PS(x) once,
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order the points increasingly by their point stability, and successively remove
objects from the dataset in this order. We stop if the average PS(x) for all re-
maining x reaches p%. A recalculation of PS(x) after each removal would lead
us to O(r2 · n2).

A more efficient implementation makes use of the fact that upon removal
of the next data object the contingency tables need not be recalculated because
they change only in one cell by 1. The partitions associated with the table tell us
which cell is affected. Furthermore we want to remove data objects successively
until we reach the desired average stability for the remaining data, so we actually
do not need to calculate individual stability values PS(x) but only the average
stability PS(x) of all remaining x. For the average stability PS we have

PS =
1

|D|
∑
x∈D

PS(x) =
1

|D|
∑
x∈D

1

|M2
x |

∑
(P,Q)∈M2

x

|CQ
x ∩ CP

x | − 1

|CP
x | − 1

(2)

As the rightmost term in (2) is the same for all data objects in the same cell of
the contingency table (and |M2

x | = |M |(|M | − 1) regardless of x) we arrive at

PS =
1

|D||M |(|M | − 1)

∑
(P,Q)∈M2,P6=Q

∑
P∈P,Q∈Q

|Q ∩ P | · |Q ∩ P | − 1

|P | − 1

Thus the calculation of PS can be done in O(r2 · c2) and is independent of the
dataset size n. Recalculating PS until it reaches a value of 1 has therefore a
complexity of O(r2 · c2 · n).

4 Empirical Evaluation

We use standard R implementations for the clustering algorithms as well as the
validity indices [6]. We report results for a selection of indices, such as SDbw
(identified as best index in [16]) or Silhouette (identified as best index in [2]).

4.1 Artificial Datasets

We consider a set of 6 artificially generated, two-dimensional datasets first, shown
in Fig. 4. In this setting, a decision about the correct clustering can be done by
visual inspection. For a range of clustering algorithms and parameters the same
number of k · m = 25 runs were evaluated by the validity indices and then
averaged. Among the results, the Tab. 2 reports one run that achieved the best
average value. The correctness of the partition was evaluated by visual inspection
and is indicated by bold face in the Table.

No structure: We start with a dataset that has no structure at all, the disc
dataset in Fig. 4(top left). In absence of any clusters or focal points, the clusters
in different runs do not have much in common. The SSC plot for this dataset is
shown in Fig. 5(top left). The runs that have high consistency and high stability
(top right corner) do not discover any structure (no coloured circles visible):
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Table 2. Results of popular cluster validity indices for various datasets. Correct result
in bold face. If multiple runs achieved the same evaluation, only one is listed.

dataset CH Dunn Silhouette DB SDbw

disc kmeans, 7 single, 2 kmeans, 3 kmeans. 7 kmeans, 7
triangle single, 3 single, 3 single, 3 single, 3 single, 3
ring kmeans, 7 single, 2 dbscan, 0.1 kmeans, 7 kmeans, 7
grid kmeans, 4 average, 7 dbscan 0.1 kmeans, 4 kmeans, 4
block kmeans, 7 single, 2 dbscan 0.1 kmeans, 7 kmeans, 7
ellipse kmeans, 6 dbscan, 0.075 kmeans, 4 dbscan, 0.075 dbscan, 0.075

The single-linkage and dbscan runs group all data in one cluster (and exclude
only a few outliers). All other runs have a very poor stability value, almost all
of the data was marked as unstable. The SSC plot shows clearly that none of
the algorithms did discover anything of interest – which is perfectly right for the
disc dataset. In contrast, most validity measures favour kmeans (c = 7) – due to
a monotonic behavior in c and c = 7 was the highest value in our experiments.
Most validity indices are not prepared for this case as they compare at least two
clusters.

Compact clusters: Next we consider a clear structure, the triangle dataset
of Fig. 4(top middle). This is a simple task for many clustering algorithms, but
may still cause problems. For instance, even with the correct number of clusters,
k-means splits one of the three clusters from time to time (R implementation ini-
tializes prototypes with random points). The top right corner of well-performing
runs in the SSC plot of Fig. 5(top middle) is populated with various runs (e.g.
single linkage, c = 3), many of them indicating the stable discovery of 3 equal-
sized clusters by means of a structure index of about 1.6. In Fig. 4(top middle)
only a single object has been marked as instable by the average-linkage clus-
tering. The validity indices also work well with this dataset, all of the indices
prefer the correct number of clusters c = 3. But for many indices, the average
evaluation of k-means is only slightly worse than that of single-linkage, but the
SSC plot tells a different story: Because of the occasional cluster splitting the
k-means runs receive lower consistency and stability values, it yields the correct
solution less reliable.

Cluster shape: The ring dataset in Fig. 4(top right) has been used many
times in the literature. It has been chosen because many validity indices have a
bias towards compact clusters and would not accept the inner cluster and the ring
as two clusters. Only the Dunn validity index selects a correct solution, while
the other measures prefer k-means again (c = 7). The runs with high values
of c, however, do not lead to stable partitions, they subdivide the outer ring
arbitrarily, these clusters are not reproducible. In contrast to the validity indices,
the SSC-plot in Fig. 5(top right) clearly favors the single-linkage (c = 2) solution
as an optimal solution. (The icon is somewhat difficult to see, because several
meanshift results with zero structure lie at approximately the same position).
There is a clear gap to other runs in terms of stability and consistency.
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Fig. 4. Datasets from top left to bottom right: disc, triangle, ring, grid, block, ellipse.
The red color refers to the stability obtained of some selected clustering algorithm.

A second dataset ellipse with varying shapes is shown in Fig. 4(bottom
right): two small spherical and one large long-stretched cluster. The SSC plots
indicates that only the meanshift algorithm manages to discover these clusters
almost perfectly. Other runs in the top-right corner assign all data to a single
cluster and thus discover no structure. A k-means run claims to discover more
structure, but far less consistent: The visual inspection of the result shows that
the long-stretched cluster is broken up into several portions of roughly equal
size. Again, the results selected by the cluster validity indices in Tab. 2 do not
correspond to the correct solution. Either many clusters are used to split up the
long-stretched cluster, a single cluster with all data (meanshift, 0.3), or a few
tiny clusters with over 90% of the dataset marked as noise (dbscan, 0.075).

Clustering tendency: The grid dataset of Fig. 4(bottom left) is another
example for a dataset that carries no internal structure. In contrast to disc, most
validity indices suggest c = 4 instead of c = 7 now. This is due to the corners,
which were absent in the disc dataset. They serve as focal points and stabi-
lize the cluster positions, while at the same time guaranteeing four equal-sized
clusters (cf. stable points in Fig. 4). The SSC-plot of Fig. 5(bottom left) looks
similar to the disc dataset: Most runs have low stability and low consistency
(lower left corner) and those runs with higher stability offer no structure. The
only exception is the discussed phenomenon with k-means (c = 4), where the
corner stabilize the cluster positions, which yields a high stability value. How-
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Fig. 5. SSC-plots (top left to bottom right): disc, triangle, ring, block, grid, ellipse.

ever, as we can see from the instable points (marked red) in Fig. 4(bottom left),
the clusters and not separated and we achieve a quite low consistency value.

The grid dataset is also meant as a counterpart of the block dataset, where
two of the four corners actually form separated clusters, so we have 3 clusters
in total. The SSC plot clearly shows a few runs (dbscan, single-linkage) that
deliver optimal results at an entropy close to 0.8 (because we have one very large
cluster and two small clusters). On the contrary, the best k-means run suggests
two equal-sized clusters that split the large cluster into two (cf. instable portion
in Fig. 4(bottom middle)). This leads to a structure index close to 1 (two equal-
sized clusters), but the consistency is poor (below 0.75). The SSC-plot reflects
the performance again very well, whereas most validity indices favour many
clusters (k-means, c = 7). None of the measures hints at the correct solution.

In summary, the cluster validity indices were misled by their biases, whereas
the SSC-plot (as well as the selection procedure mentioned in Sect. 3.4) managed
to identify the most reliable algorithm for every dataset.

4.2 Real Datasets

Next we examine the results on three real dataset from the UCI machine learning
repository: wine (all attributes except the class), ecoli (selected attributes: mcg,
gvh, aac, alm1 and alm2), and pendigits (attributes #6, #8, #10 and #12).
There is no ground truth available with these datasets.
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The wine dataset has three classes and it is well-known that a k-means run
with 3 clusters matches the classes pretty well. In the SSC-plot in Fig. 6(left)
exactly this run stands out by the highest structure index (partition entropy of
≈ 1.6, corresponding to 3 equal-sized clusters). But we also see that only 65%
of the data was clustered stably and the consistency is also quite low. So it is
safe to conclude that we observe a similar phenomenon as with the grid dataset:
The data distribution provides focal points for three clusters, but we do not have
three separated clusters. The k-means run with c = 2 has much better stability
and consistency values.

A 5D-excerpt of the ecoli dataset is shown in Fig. 6(bottom middle). Upon
visual inspection some scatterplots offer no structure (aac vs gvh), others seem
to suggest two clusters (aac vs alm2), some may even hint at three clusters (gvh
vs alm1). The SSC-plot supports this impression we got by visual inspection
very well: we see a close-to-optimal meanshift result for two clusters, but also a
runner-up with three clusters (86% stability, 92% consistency). Other algorithms
reach a similar structure index, but are less stable and less consistent.

Finally we discuss results for a real dataset where the visual inspection is not
conclusive: the pendigits dataset (handwritten digit recognition). Although we
use only 4 attributes from the original dataset, the scatterplot matrix looks very
confusing and nothing hints at the existence of separated clusters. From the
SSC-plot in Fig. 6(right) we see a very good k-means result with stability and
consistency close to 1 – no cluster splitting or lacking separation with k-means
for this run. The precision-recall allows to diagnose the results: For instance, for
two k-means runs we observe a steep drop in precision followed by an almost
constant segment (curves (b)). For these runs, only a few dense points were sta-
bly discovered (TP), but most of the surrounding, less dense data was marked
instable as it was assigned to alternating clusters. The k-means curve that drops
earliest recovers later (curve (c)): This means that one particularly dense area
was not stably clustered (FP), possibly a cluster splitting phenomenon, but for
the less dense data the algorithm performed much better (more TPs). Several
average-linkage curves (d) achieve good results in medium dense areas, but per-
form extremely poor in the areas of highest and lowest density.

4.3 Sensitivity

The consistency index depends on the parameter k in dk(·). We have used k = 16
throughout all experiments. The size of k influences the degree of separation that
is required for clusters: For k = 0 all neighborhoods are pure and none for k = n.
A cluster that does not even consist of k points will not have any pure neigh-
borhoods. The role of k is that of assuring separation at the border of a cluster,
where data from the own cluster may lie on one side and data from another
cluster on the opposite side. If the gap is large enough such that the k nearest
objects all belong to the same cluster as x, we consider x well separated from
other clusters. We have calculated consistency values for k ∈ {8, 12, 16, 20, 24}
over 27 datasets and obtained a lowest pairwise Pearson correlation of 0.989
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Fig. 6. Real Datasets and SSC-plot from left to right: wine, ecoli, pendigits.

(k = 12 vs k = 24) and a correlation coefficient of 1 for k = 8 vs k = 12. So the
results are robust and not sensitive to the exact choice of k.

5 Summary and Conclusions

We have revisited the problem of evaluating clustering algorithms from a struc-
ture discovery perspective. Recent studies list and compare 30 different validity
indices to find out the best measure. But all these measures seem to have strong
biases, which makes them less suited to directly compare the performance of
an arbitrary selection of algorithms on an unknown dataset. This has also been
confirmed by our experiments. While it is common to apply a broad range of
classifiers to a new dataset to see which method may work best with the unknown
data, we seem to have nothing comparable for clustering methods.

For the case of structure discovery capabilities, a collection of three indices
has been proposed in this paper that convey a complete picture of the algorithms
performance on this dataset: the fraction of stably clustered data, the amount of
discovered structure, and the consistency of the resulting partitions with the no-
tion of a cluster being “compact and separated”. The experiments demonstrate
that the method is less biased towards specific cluster shapes or notions of com-
pactness and separation than existing methods. Addressing the stability of each
object and its density separately, allows us to apply methods usually restricted
to classification task in the field of unsupervised clustering. The proposal may
therefore strike a new path for a systematic and direct comparison of clustering
algorithms from different paradigms and with different biases – at least as far as
structure discovery capabilities are concerned.
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The results are reproducible. The source code, the datasets and all figures
are available at https://public.ostfalia.de/~hoeppnef/validity.html
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