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Abstract. We present a new unsupervised method for learning general-
purpose sentence embeddings. Unlike existing methods which rely on lo-
cal contexts, such as words inside the sentence or immediately neighbor-
ing sentences, our method selects, for each target sentence, influential
sentences from the entire document based on the document structure.
We identify a dependency structure of sentences using metadata and
text styles. Additionally, we propose an out-of-vocabulary word handling
technique for the neural network outputs to model many domain-specific
terms which were mostly discarded by existing sentence embedding train-
ing methods. We empirically show that the model relies on the proposed
dependencies more than the sequential dependency in many cases. We
also validate our model on several NLP tasks showing 23% F1-score
improvement in coreference resolution in a technical domain and 5% ac-
curacy increase in paraphrase detection compared to baselines.
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1 Introduction

Distributed representations of words and sentences are ever more leveraged to
understand text [15, 16, 11, 19, 8, 2, 23]. These methods embed a word or sentence
by training a neural network to predict the next word or sentence without su-
pervision. However, unlike human reading with broader context and structure
in mind, the existing approaches focus on a small continuous context of neigh-
boring sentences. These approaches work well on continuous but less structured
text like movie transcripts, but do not work well on structured documents like
encylopedic articles and technical reports.

To better support semantic understanding of such technical documents, we
propose a new sentence embedding framework to learn general-purpose sentence
representations by leveraging long-distance dependencies between sentences in a
document. We observe that understanding a sentence often requires understand-
ing of more comprehensive context as well as the immediate context, including
the document title, previous paragraphs, or even related articles as shown in
Figure 1. For instance, all the sentences in the document can be related to the
document title (Figure 1(a)). The items in a list structure can be influenced by
the sentence introducing the list, and, HTML documents can contain hyperlinks
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to provide more information on certain terms (Figure 1(b)). Using these doc-
ument structure-based contexts, we can connect ‘ransomware’ with ‘payment’
(Figure 1(a)).

Locky ransomware on aggressive hunt for victims
Millions	of	spam	emails	spread	new	ransomware	variant	on	the	
day	it	first	appeared.
A	new	variant	of	ransomware	 known	as	Locky (detected	by	
Symantec	as	Trojan.Cryptolocker.AF)	has	been	spreading	quickly	
since	it	first	appeared	on	Tuesday	(February	16).	The	attackers	
behind	Locky have	pushed	the	malware	aggressively,	using	
massive	spam	campaigns	and	compromised	websites.	……
Ransomware is	computer	malware	that	installs	covertly	on	a	victim's	
computer,	executes	a	cryptovirology	attack	that	adversely	affects	it,	and	
demands	a	ransom	payment	to	decrypt	it	or	not	publish	it.

1
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(a) Document Title and Footnote

WireLurker is a family of malware targeting both macOS and iOS systems.[1] The 
malware was designed to target users in China that use Apple mobile and desktop 
devices.[2] The malware was suspected of infecting thousands of Chinese mobile 
devices.[3] The security firm Palo Alto Networks is credited with uncovering the 
malware.[1]

Wirelurker

Several steps can be taken in order to protect yourself from WireLurker and other 
malware.    

• Do not install software or applications from unknown or unreliable sources.    
• Make sure that System Preferences on your Mac are set to: ‘Allow apps 

downloaded from: Mac App Store and identified developers’.    
• Keep your security software up to date on your Mac or desktop.    
• Keep your iOS software up to date on your mobile device.    
• Do not connect your mobile device to unknown computers.

Protection

Malware is any software intentionally 
designed to cause damage to a computer, 
server or computer network. Malware can 
take a variety of forms, including computer 
viruses, worms, Trojan horses, 
ransomware, spyware, adware, scareware. 
It can take the form of executable code, 
scripts, active content, 

(b) Section, List and Hyperlink

Fig. 1. Examples of long distance dependencies between sentences

Our approach, leveraging such structural elements, has several advantages.
First, to provide enough context to understand a sentence, instead of using a
global context of all sentences in the document, we leverage a concise set of
context sentences to be considered using the structural dependencies. A larger
context can produce more accurate representations of sentences. However, it
is infeasible to train neural network models with a large number of context
sentences. Second, we further prioritize the selected sentences based on their
semantics and the dependency types. In this way, our model can better handle
documents containing several subtopics that may cause sudden local context
changes. Some sentences have dependencies to distant ones when a different
perspective of the topic is introduced. Using only small neighboring sentences
results in insufficient input to the neural network to understand such a sudden
change. Using long distance dependencies, we can provide a broader context.

Additionally, we can leverage the structural information to better handle
out-of-vocabulary (OOV) words. The vocabulary in a neural network is always
limited due to costly training time and memory use. Existing methods discard
low frequency words and map all OOV words to one or a few variables. This
method can loose important keywords in a technical domain that continuously
creates new terms. We introduce more fine-grained OOV variables using infor-
mation extracted from the structural context.

We empirically show that the model actually learns to rely more on some of
the dependencies. We validate our model on several NLP tasks using a Wikipedia
corpus which shows that our model consistently outperforms the existing meth-
ods. Our model produces much lower loss for the target sentence prediction task
and 5% increase in accuracy for paraphrase identification than Skip-Thought.
The results confirm that training with only local context does not work well
for such documents. We also compare the performance of the learned embed-
ding for coreference resolution. For coreference resolution, our model shows 23%
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Table 1. Categorization of sentence embedding methods. * denotes methods not re-
quiring labeled data.

Range Continuity

Continuous Discontinuous

Intra-sentence [9, 6, 7, 24, 2, 18]; [10]* [22, 13, 23]

Inter-sentence [8]* Our work*

improvement in F1 over DeepCoref [1], a state-of-the-art deep learning-based
approach.

The main contributions of the paper include:

– A general-purpose sentence embedding method which leverages long distance
sentence dependencies extracted from the document structure.

– A rule-based dependency annotator to automatically determine the docu-
ment structure and extract all governing sentences for each sentence.

– A new OOV handling technique based on the document structure.

2 Related work

Distributed representation of sentences, or sentence embedding, has gained much
attention recently, as word-level representations [15, 16, 11, 19] are not sufficient
for many sentence-level or document-level tasks, such as machine translation,
sentiment analysis and coreference resolution. Recent approaches using neural
networks consider some form of dependencies to train the network. Dependen-
cies can be continuous (relating two adjacent words or sentences) or discontin-
uous (relating two distant words or sentences), and intra-sentence (dependency
of words within a sentence) or inter-sentence (dependency between sentences).
Many sentence embedding approaches leverage these dependencies of words to
combine word embeddings as shown in Table 1.

One direct extension of word embedding to sentences is combining words
vectors in a continuous context window. [9] uses a weighted average of the con-
stituent word vectors. [24], [2], and [18] use supervised approaches to train a
LSTM network that merges word vectors. [6] and [7] use convolutional neural
networks (CNN) over continuous context window to generate sentence represen-
tations. [10] includes a paragraph vector in the bag of word vectors and apply a
word embedding approaches [15, 16].

Recently, several researchers have proposed dependency-based embedding
methods using a dependency parser to consider discontinuous intra-sentence re-
lationships [22, 13, 23]. [22] uses recursive neural network to consider discontinu-
ous dependencies. [13] proposes a dependency-based CNN which concatenate a
word with its ancestors and siblings based on the dependency tree structure. [23]
proposes tree structured LSTM networks. These studies show that dependency-
based (discontinuous) networks outperform their sequential (continuous) coun-
terparts.
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Unlike these approaches considering only intra-sentence dependencies, Kiros
et al., 2015 propose a new architecture Skip-Thought [8] joining two recurrent
neural networks, encoder and decoder. The encoder combines the words in a
sentence into a sentence vector, and the decoder generates the words in the next
sentence. Our approach is similar to Skip-Thought since both approaches are
unsupervised and use inter-sentential dependencies. However, Skip-Thought
considers only continuous dependency.

Unlike our approach considering OOV in the output using the document
structure, there are approaches that build an embedding of an OOV word on
the fly that can be used as input to our system [20], [21], and [5]. Our OOV
handling focuses more on mechanism to produce OOV words as the output of
the network and leverage them in training, which is out of the scope of these
previous papers. [12] proposes a word position-based approach to address the
OOV problem for neural machine translation (NMT) systems. Their methods
allow a neural machine translation (NMT) system to emit, for each unknown
word in the target sentence, the position of the corresponding word in the source
sentence. However, their methods are not applicable to sentence embedding, as
they rely on an aligned corpus. Also, our approach considers not only word
positions but also the dependency types to define OOV words.

3 Document Structured-based Context

Previous sentence embedding methods use intra-sentence dependencies such as a
dependency tree, or immediately neighboring sentences for sentence embedding.
However, we identify more semantically related content to define sentence depen-
dencies based on the document structure as shown in Figure 1. In this section,
we describe a range of such inter-sentence dependencies that can be utilized for
sentence embedding and the techniques to automatically identify them.

We use the following notations to describe the extraction of document structure-
based context for a given sentence. Suppose we have a documentD = {S1, . . . , S|D|},
which is a sequence of sentences. Each sentence Si is a sequence of words, rep-
resented as si,1, . . . , si,|Si|. For each target sentence St ∈ D, St depends on a
subset G ⊂ D1. We call such a sentence Gi in G a governing sentence of St, and
say Gi governs St, or St depends on Gi, defined by one of the dependency types
in D described below.

3.1 Titles

The title of a document, especially a technical document, contains the topic
entity, the key claim, and/or the summary of the document, and all other sen-
tences describe and elaborate the title. For instance, the title of the document
(e.g., WannaCry) can clarify the meaning of a definite noun phrase (e.g., the
ransomware) in the sentence. Section titles play a similar role, but, mostly to

1 For simplicity, we use G to denote a St specific set.
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the sentences within the section. We detect different levels of titles, starting from
the document title to chapter, section and subsection titles. Then, we identify
the region in the document which each title governs and incorporate the title in
the embedding of all sentences in the region. To identify titles in a document,
we use the various information from the metadata and the document content as
follows.

Document Metadata (DTM): We extract a document title from the<title>
tag in a HTML document or from the title field in Word or PDF document meta-
data. Since the document title influences all sentences in a document, we consider
this title governs every sentence in D.

Heading Tag (DTHn): The heading tags <h1> to <h6> in HTML docu-
ments are often used to show document or section titles. We consider all sen-
tences between a heading tag and the next occurrence of the same level tag are
considered under the influence of the title.

Table Of Contents (DTC): Many documents contain a table of contents
(TOC) providing the overall structure of the document. To detect the titles
based on the table of contents, we first recognize a phrase indicating TOC,
such as “table of contents”, “contents” or “index”. Then, we parse the content
following the cue phrase and check if it contains a typical TOC pattern such
as “Chapter 1 – Introduction” or “Introduction · · · · · · · · · 8”. The range of each
section can be easily identified from the TOC. If the document is an HTML file,
each line in the TOC tends to have a hyperlink to the section. For non-HTML
documents, we can extract the page number from the TOC (e.g., page 8) and
locate the corresponding pages.

Header and Footer (DTR): Technical documents often contain the docu-
ment or section titles in the headers or footers. Thus, if the same text is repeated
in the headers or footers in many pages, we take the text as a title and consider
all sentences appearing in these pages belong to the title.

Text Styles (DTS): Titles often have a distinctive text style. They tend
to have no period at the end and use a larger font size, a higher number of
italic or bold text, and a higher ratio of capitalized words compared to non-title
sentences. We first build a text style model for sentences in the document body,
capturing the three style attributes. If a sentence ends without a period and any
dimension of its style model has higher value than that of the text style model,
we consider the sentence as a title. Then, we split the document based on the
detected titles and treat each slice as a section.

3.2 Lists

Authors often employ a list structure to describe several elements of a subject.
This list structure typically has an introductory sentence stating the main con-
cept followed by a bulleted, numbered or in-text list of items supporting the
main concept as illustrated in Figure 1(b). An item in the list is conceptually
more related to the introductory sentence than the other items in the list, but
the distance can be long because of other items. We use the following methods
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Fig. 2. Our model architecture.

to identify list items, consider the sentence appearing prior to the list items as
the introductory sentence and assume that it governs all items in the list.

Formatted List (DLF ): To extract numbered or bulleted lists, we use
the list tags (e.g., <ul>, <ol>, <li>) for HTML documents. For non-HTML
documents, we detect a number sequence (i.e., 1, 2, ...) or bullet symbols (e.g.,
-, ·) repeating in multiple lines.

In-text List (DLT ): We also identify in-text lists such as “First(ly), . . ..
Second(ly), . . .. Last(ly), . . .” by identifying these cue words.

3.3 Links

Hyperlinks (DH): Some sentences contain hyperlinks or references to provide
additional information or clarify the meaning of the sentence. We can enrich the
representation of the sentence using the linked document. In this work, we use
the title of the linked document to govern the target sentence. Alternatively, we
can use the embedding of the linked document.

Footnotes and In-document Links (DF ): Footnotes also provide ad-
ditional information for the target sentence. In an HTML document, such in-
formation is usually expressed with in-document hyperlinks, which ends with
“#dest”. In this case, we identify a sentence marked with “#dest” and add a
dependency between the two sentences.

3.4 Window-based Context (DWn):

We also consider the traditional sequential dependency used in previous meth-
ods [8, 4]. Given a document D = {S1, . . . , S|D|}, the target sentence St is con-
sidered to be governed by n sentences prior to (n < 0) or following (n > 0) St.
In our implementation, we use only one prior sentence (DW−1

).

4 Neural Network Models

In this section, we describe our model architecture (Figure 2) in detail. Based on
the dependencies extracted in Section 3, we build a sentence embedding model.
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Similarly to Skip-Thought [8], we train our model to generate a target sentence
St using a set of governing sentences G. However, Skip-Thought takes into
account only the window-based context (DWn), while our model considers diverse
long distance context and their dependency types as described in Section 4.1.
Additionally, unlike existing sentence embedding methods, which include only a
small fraction of words (typically high frequency words) in the vocabulary and
map all other words to one OOV word, we introduce a new OOV handler in our
model in Section 4.2.

4.1 Inter-Sentential Dependency-based Encoder-Decoder

Our model has several encoders (one encoder for each governing sentence Gi ∈
G), a decoder and an OOV handler as shown in Figure 2. The input to each cell
is a word, represented as a dense vector. We use the pre-trained vectors from
the CBOW model [16], and the word vectors can be optionally updated during
training.

We now formally describe the model given a target sentence St and a set
G of its governing sentences. We first describe the encoders that digest each
Gi ∈ G. Given the i-th governing sentence Gi = (gi,1, . . . , gi,|Gi|), let w(gi,t) be
the word representation (pre-trained or randomly initialized) of word gi,t. Then,
the following equations define the encoder for Gi.

hi,t = RC(w(gi,t), hi,t−1; θE),

λi = sigmoid(Udi + g), hi = hi,|Gi|,

h̄0 =
∑
i

Wdep(i)

{
λi(udep(i)hi + adep(i))

+(1− λi)hi + b}

(1)

where RC is a recurrent neural network cell (e.g., LSTM or GRU) that up-
dates the memory hi,t; θE is the parameters for the encoder RC; λi is an OOV
weight that decides how much we rely on out-of-vocabulary words; di denotes
the OOV features for Gi; U and g are linear regression parameters; sigmoid(·) is
the sigmoid function; udep and adep are an OOV weight transformation; W and
b are a transformation matrix and a bias; and h̄0 is the aggregated information
of G and is passed to the decoder for target sentence generation.

Now, we define the decoder as follows:

ot, h̄t = RC(ot−1, h̄t−1; θD),

yt = softmax(V ot + c)
(2)

where RC is a recurrent neural network cell that updates the memory h̄t and
generates the output ot; θD is a set of parameters for the decoder RC; softmax(·)
is the softmax function; and V ot + c transforms the output into the vocabulary
space. That is, V ot + c generates logits for words in the vocabulary set and is
used to predict the words in the target sentence.
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To strike a balance between the model accuracy and the training time, we
use K randomly chosen governing sentences from G for all target sentence. We
use the cross entropy between yt and ot as the optimization function and update
θE ,Wdep(i), b, V, c, θD and optionally w(·).

4.2 Out-of-vocabulary (OOV) mapping

Incorporating all the words from a large text collection in deep learning mod-
els is infeasible, since the amount of memory use and training time will be
too costly. Especially, in technical domains, new jargons are constantly added,
and, their character level information is often not very useful (e.g., WannaCry,
129.42.56.189).

Thus, we propose an OOV word handling method based on the diverse sen-
tence relationships from Section 3. OOV word handling is desired in the following
three places: (1) input embeddings to encode the governing sentences (G); (2)
input embeddings to decode the target sentence (St); and (3) output logits to
compute the loss with respect to St. For the first two cases, i.e., generating
the input embeddings of G and St for the encoder and the decoder, we use the
average vector of all words in the vocabulary to represent all OOV words.

While there are several approaches to generate input embeddings for OOV
words (Case 1 & 2), such as average of all word embeddings, character-based
embedding, context-based embedding [20, 21, 5], there has been little work for
building a model generating OOV words in the output and use them in the
training loss (Case 3). Existing sentence embedding techniques reduce the vo-
cabulary size mainly by using only high frequency words and by collapsing all
other words to one special word (e.g., <unk>). However, this single OOV symbol
for all OOV words treats both very important OOV word (e.g., topic entities,
domain-specific words and proper nouns) and other words alike, resulting in
unsatisfactory results for technical documents.

Instead of replacing all OOV words by a single variable, we consider the
dependency and the position of OOV words to build a set of OOV variables.
Given the training corpus with the entire vocabulary VM with size M , we first
select N most frequent words in the training corpus as an initial vocabulary VN
(typically,N �M , i.e., tens of thousands vs. millions or billions). Then, we build
an OOV map that reduces the OOV words (VM −VN ) into a smaller vocabulary
VOOV of OOV variables, {Oi(j)}, where Oi(j) represents j-th OOV word given
a governing sentence Gi (e.g., an OOV variable may indicate the actor in the
previous sentence). In particular, we use OOV variables to represent the first
and the last η OOV words in sentences with each dependency, observing that
many semantically important words tend to appear at the beginning or the end
of the governing sentences. We denote the j-th last OOV word by Oi(−j). This
idea of encoding OOV words based on their positions in a sentence is similar to
the machine translation approach by [12]. However, we encode OOV words using
the dependency type of the sentence as well as their position in the sentence.

After we replace OOV words using the OOV mapping, we have the aug-
mented vocabulary VN ∪ VOOV with a manageable size. The optimization goal
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of each RNN cell without OOV words is to predict the next word with one cor-
rect answer. In contrast, our model allows multiple correct answers, since an
OOV word can be mapped to multiple OOV variables. We use the cross entropy
with soft labels as the optimization loss function. The weight of each label is
determined by the inverse-square law, i.e., the weight is inversely proportional
to the square of the number of words associated with the label. This weighting
scheme gives a higher weight to less ambiguous dependency.

One additional component we add related to OOV words is a weight func-
tion for the governing sentences based on occurrences of proper nouns (λi in
Equation 1). Instead of equally weighing all governing sentences, we can give
a higher weight to sentences with proper nouns, which are more likely to have
OOV words, to leverage the contextual information of such OOV words in other
sentences to understand the OOV words in the target sentence. Thus, we in-
troduce a feature vector representing the number of OOV proper nouns in the
i-th governing sentence (di in Equation 1). Currently, the features include the
number of OOV words whose initials are uppercased, the number of OOV words
that are uppercased, and the number of OOV words with at least one upper-case
letter. Together with the linear regression parameters, U and g, the model learns
the weights for different dependency types.

5 Experiments

We empirically evaluate our approach on various NLP tasks and compare the
results with other existing methods. We trained the proposed model (Ours) and
the baseline systems on 807,647 randomly selected documents from the 2009
Wikipedia dump, which is the last Wikipedia dump released in HTML format.
Since our approach leverages HTML tags to identify document structures, our
model use the raw HTML files. For the baseline systems, we provide plain text
version of the same articles. All models were trained for 300K steps with 64-
sized batches and the Adagrad optimizer [3]. For the evaluation, we use GRU
cells for RC in Equation 2. For each target sentence, if there are more than 8
governing sentences, we randomly choose 8 of them as the context (K = 8).
We set the maximum number of words in a sentence to be 30 and pad each
sentence with special start and end of sentence symbols. We set η to 4, resulting
in |VOOV | = 80.

5.1 Dependency importance

In this experiment, we show the relative importance of long distance sentence
relations compared to sequential relations. Note that Wdep in Equation 1 implies
the importance level of a dependency dep. In Table 2, we show the relative
importance of the different dependencies compared to the sequential dependency
(DW−1

), which is used in other methods. As we can see, all levels of document and
section titles, except the fourth level subsection title, play a more significant role
than the sequential dependency. The reason that the title from the metadata,
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(DTM ), does not have a high weight as the title from the heading 1 tag (DTH1) is
that the metadata contains extra text, “- Wikipedia”, in the title for Wikipedia
articles (e.g., “George W. Bush - Wikipedia” instead of “George W. Bush”).
Further, hyperlinks (DH), in-document links (DF ) and formatted lists (DLF ) are
all shown to have a similar influence as the sequence dependency. The remaining
dependencies, DTC , DTR, DTS , and DLT are scarcely found in the Wikipedia
corpus, and thus, did not converge or were not updated.

Table 2. Weights ‖Wdep‖2/‖WDW,−1‖2 of dependencies.

DTH1 DTH2 DTH3 DLF DTM DF DTH4 DTH5 DH

2.30 2.30 2.30 1.00 1.00 1.00 0.24 1.40 1.00

5.2 Target sentence prediction

Unlike most other approaches, our model and Skip-Thought [8] can learn
application-independent sentence representations without task-specific labels.
Both models are trained to predict a target sentence given a context. The pre-
diction is a sequence of vectors representing probabilities of words in the target
sentence. For a quantitative evaluation between the two models, we compare
their prediction losses by using cross entropy loss. We randomly chose 640,000
target sentences for evaluation and computed the average loss over the 640K
sentences.

We compare Skip-Thought with two versions of our model. Ours denotes
our model using the document structure-based dependencies and the OOV han-
dler. Ours-DEP denotes our model with the OOV handler but using only local
context like Skip-Thought to show the impact of the OOV handler. Table 3
shows the comparison of the three models. The values in the table are the aver-
age loss per sentence. We measure the average loss value excluding OOV words
for Skip-Thought, as it cannot handle OOV words. However, for our models,
we measure the loss values with (All Words) and without OOV words (Voc.
Words). As we can see, both Ours−DEP and Ours significantly outperform
Skip-Thought resulting in 25.8% and 26.9% reduction in the loss values re-
spectively.

5.3 Paraphrase detection

Further, we compare our model with Skip-Thought on a paraphrase detection
task using the Microsoft Research Paraphrase corpus [14]. The data set consists
of 5,801 sentence pairs extracted from news data and their boolean assessments
(if a sentence pair is paraphrase or not), which were determined by three assessors
using majority voting. The goal is correctly classifying the boolean assessments,
and the accuracy (# correct pairs / # all pairs) is measured. We used 4,076 pairs
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Table 3. Comparison of our models and Skip-Thought for target sentence prediction

Method All Words Voc. Words

Ours 0.1456 0.1394
Ours-DEP 0.1467 0.1415

Skip-Thought N/A 0.1907

Table 4. Comparison of paraphrase detection accuracy

Method Accuracy

Ours 0.72
Skip-Thought 0.67

for training and 1,725 pairs for testing. Since the data sets contain sentence pairs
only and no structural context, we evaluate only the effectiveness of the trained
encoder. To compare the quality of sentence embeddings by the two models,
we use the same logistic regression classifier with features based on embedded
sentences as in [8]. Given a pair of sentences S1 and S2, the features are the
two embeddings of S1 and S2, their entry-wise absolute difference, and their
entry-wise products. Our model shows a 5% points higher accuracy than Skip-
Thought in paraphrase detection (Table 4), demonstrating the effectiveness of
our encoder trained with the structural dependencies. Note that Skip-Thought
trained with Wikipedia corpus performs worse than a model trained on books
or movie scripts due to more complex and less sequential structure in Wikipedia
documents.

5.4 Coreference resolution

While our system is not designed for coreference resolution, the rich sentence em-
bedding can be used for unsupervised coreference resolution, unlike the methods
relying on annotated corpus [1]. Although building a dedicated coreference reso-
lution method for a given domain can produce better results, we claim that our
embedding approach can extract a good starting set of features. We first detect
entity mentions, and, for a pronoun or a generic entity mentions (e.g., a definite
noun phrase), we select a list of candidate referents that conform to the mention
type of the entity reference. Then, we replace the entity reference with each of
the candidate referents and compute the loss of the new sentence. Finally, we
choose the referent with the lowest loss value as the result, if the loss is less
than the original sentence loss value. We extend our model to use sequential
dependencies of DW−3 , . . . , DW1 (Section 3.4), and further train it with a 700K
unlabeled cybersecurity corpus collected from security blogs and websites.

We compare our approach with the Stanford Deep Coreference Resolution
tool (DeepCoref) [1] on a set of cybersecurity-related documents. The evalua-
tion data consists of 628 entity coreferences extracted from 38 Wikipedia articles
about malware programs which were not included in the training document set.
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Table 5. Overall performance on coreference resolution

Method Prec. Recall F1

Ours+SER 0.77 0.20 0.32

DeepCoref+NER 0.13 0.10 0.11

DeepCoref+SER 0.66 0.05 0.09

Petya (malware)
…

Operation
The "NotPetya" variant utilized in the 2017 attack uses EternalBlue, …
…

EternalBlue is generally believed to have been developed by the U.S. 
National Security Agency (NSA);[19] it was leaked in April 2017 and 
was also used by WannaCry.

DEEPCOREF
Ours

Fig. 3. Example coreference resolution

We conducted experiments for several cybersecurity related entity types such
as ‘Malware’ and ‘Vulnerability’ and general entity types such as ‘Person’ and
‘Organization’.

Since DeepCoref was designed mostly for general entity types and may not
be able to identify security entity types, we apply the system both with its own
named entity recognizer as the candidate generator (DeepCoref+NER) and
with our candidate generator designed for security entities (DeepCoref+SER).
Table 5 shows MUC precision, recall, and F1-score [17]. Our model achieves
higher precision and recall than both versions of DeepCoref. Note that Deep-
Coref+NER produces very low precision compared to the other models. While
DeepCoref+SER shows higher precision, it still performs worse than Ours+SER
due to the lack of features for security terms. Figure 4 shows the performance
for different entity types. As we can see, while DeepCoref+SER shows higher
F1 score than DeepCoref+NER for the security entity types, it still shows
lower F1 score than Ours+SER due to semantics unseen during the training.
That is, for person and organization, syntactic features used by DeepCoref
are important. However, when there is no such features available (i.e., malware
and vulnerability), the semantic relationship among sentences is more impor-
tant. Figure 3 shows an example case where DeepCoref identifies the closer
candidate as coreferent rather than examining semantics.

6 Conclusion and Future Work

In this paper, we presented a novel sentence embedding technique exploiting di-
verse types of structural contexts and domain-specific OOV words. Our method
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Fig. 4. F1-score per entity types

is unsupervised and application-independent, and it can be applied to various
NLP applications. We evaluated the method on several NLP tasks including
coreference resolution, paraphrase detection and sentence prediction. The re-
sults show that our model consistently outperforms the existing approaches con-
firming that considering the structural context generates better quality sentence
representations.

There are a few possible directions of future work. The proposed approach
relies on rule-based dependency annotation. Devising a supervised dependency
annotator can be an interesting direction to adapt to other domains with slightly
different rules or document format (e.g., XLS). There are also unsupervised
neural dependency parsers for intra-sentence dependencies. Studying an inter-
sentence counterpart would be very useful for our framework. In our implemen-
tation, we used only document titles of the hyperlinked documents. But, linking
documents to understand a new document and better exploiting related or pre-
requisite documents can be an important research direction.
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