
Deep convolutional Gaussian processes

Kenneth Blomqvist, Samuel Kaski, and Markus Heinonen (�)

Aalto University, Finland
Helsinki Institute for Information Technology HIIT, Finland

{kenneth.blomqvist,samuel.kaski,markus.o.heinonen}@aalto.fi

Abstract. We propose deep convolutional Gaussian processes, a deep
Gaussian process architecture with convolutional structure. The model
is a principled Bayesian framework for detecting hierarchical combina-
tions of local features for image classification. We demonstrate greatly
improved image classification performance compared to current convo-
lutional Gaussian process approaches on the MNIST and CIFAR-10
datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy
by over 10 percentage points.

Keywords: Gaussian processes · Convolutions · Variational inference

1 Introduction

Gaussian processes (GPs) are a family of flexible function distributions defined
by a kernel function [25]. The modeling capacity is determined by the chosen
kernel. Standard stationary kernels lead to models that underperform in prac-
tice. Shallow – or single layer – Gaussian processes are often sub-optimal since
flexible kernels that would account for non-stationary patterns and long-range
interactions in the data are difficult to design and infer [35,26]. Deep Gaussian
processes boost performance by modelling networks of GP nodes [8,30] or by
mapping inputs through multiple Gaussian process ’layers’ [5,27]. While more
flexible and powerful than shallow GPs, deep Gaussian processes result in de-
generate models if the individual GP layers are not invertible, which limits their
potential [7].

Convolutional neural networks (CNN) are a celebrated approach for image
recognition tasks with outstanding performance [21]. These models encode a
hierarchical translation-invariance assumption into the structure of the model
by applying convolutions to extract increasingly complex patterns through the
layers.

While neural networks have achieved unparalleled results on many tasks,
they have their shortcomings. Effective neural networks require large number
of parameters that require careful optimisation to prevent overfitting. Neural
networks can often leverage a large number of training data to counteract this
problem. Developing methods that are better regularized and can incorporate
prior knowledge would allow us to deploy machine learning methods in domains
where massive amounts of data is not available. Conventional neural networks do

2 K. Blomqvist et al.

not provide reliable uncertainty estimates on predictions, which are important
in many real world applications.

The deterministic CNN’s have been extended into the probabilistic domain
with weight uncertainties [3], while combinations of CNN’s and Gaussian pro-
cesses have been shown to improve calibration of the prediction uncertainty
[31]. In deep kernel learning (DKL) a feature-extracting deep neural network is
stacked with a Gaussian process predictor layer [38], learning the neural network
weights by variational inference [37]. Neural networks are known to converge to
Gaussian processes at the limit of infinite layer width [20,34,19], and similar
correspondence have been shown between CNN’s and Gaussian processes as well
[10].

Recently van der Wilk et al. proposed the first convolution-based Gaussian
process for images with promising performance [33]. They proposed a shallow
weighted additive model where Gaussian process responses over image sub-
patches are aggregated for image classification. The convolutional Gaussian pro-
cess is unable to model pattern combinations due to its restriction to a single
layer. Very recently convolutional kernels have been applied in a deep Gaus-
sian process, however with little improvement upon the shallow convolutional
GP model [18]. The translation insensitive convolutional kernel adds increased
flexibility by location-dependent convolutions for both shallow and deep models
[6]1.

In this paper we propose a deep convolutional Gaussian process, which it-
eratively convolves several GP functions over an image. We learn multimodal
probabilistic representations that encode combinations of increasingly complex
pattern combinations as a function of depth. Our model is a fully Bayesian ker-
nel method with no neural network component. On the CIFAR-10 dataset, deep
convolutions increase the current state-of-the-art GP predictive accuracy from
65% to 76%. We show that our GP-based model performs better than a CNN
model with similar depth, and provides better calibrated and more consistent
uncertainty estimates on predictions.

2 Background

In this section we provide an overview of the main methods our work relies upon.
We consider supervised image classification problems with N examples X =
{xi}Ni=1 each associated with a label yi ∈ Z. We assume images x ∈ RW×H×C

as 3D tensors of size W ×H×C over C channels, where RGB color images have
C = 3 color channels.

2.1 Discrete convolutions

A convolution as used in convolutional neural networks takes a signal, two di-
mensional in the case of an image, and a tensor valued filter to produce a new

1 We note that after placing our current manuscript in arXiv in October 2018, a
subsequent arXiv manuscript has already extended the proposed deep convolution
model by introducing location-dependent kernel [6].

Deep convolutional Gaussian processes 3

signal [11]. The filter is moved across the signal and at each step taking a dot
product with the corresponding section in the signal. The resulting signal will
have a high value where the signal is similar to the filter, zero where it’s or-
thogonal to the filter and a low value where it’s very different from the filter. A
convolution of a two dimensional image x and a convolutional filter g is defined:

(x ∗ g)[i, j] =

W−1∑
w=0

H−1∑
h=0

x[i+ w, j + h]g[w, h] (1)

x[i, j] ∈ R3 and g is in RH×W×3. Here H and W define the size of the convo-
lutional filter. Typical values could be H = W = 5 or H = W = 3. Typically
multiple convolutional filters are used, each convolved over the input to produce
several output signals which are stacked together.

By default the convolution is defined over every location of the image. Some-
times one might use only every other location. This is referred to as the stride.
A stride of 2 means only every other location i, j is taken in the output.

2.2 Primer on Gaussian processes

Gaussian processes are a family of Bayesian models that characterize distribu-
tions of functions [24]. A zero-mean Gaussian process prior on latent function
f(x) ∈ R,

f(x) ∼ GP(0,K(x,x′)) (2)

defines a prior distribution over function values f(x) with mean and covariance:

E[f(x)] = 0 (3)

cov[f(x), f(x′)] = K(x,x′) (4)

A GP prior defines that for any collection of n inputs X = (x1, . . . ,xn)T , the
corresponding function values

f = (f(x1), . . . , f(xn))T ∈ Rn

follow a multivariate Normal distribution

f ∼ N (0,K) (5)

K = (K(xi,xj))
n
i,j=1 ∈ Rn×n is the kernel matrix encoding the function co-

variances. A key property of GPs is that output predictions f(x) and f(x′)
correlate according to the similarity of the inputs x and x′ as defined by the
kernel K(x,x′) ∈ R.

Low-rank Gaussian process functions are constructed by augmenting the
Gaussian process with a small number M of inducing variables uj = f(zj),
uj ∈ R and zj = Rd to obtain the Gaussian function posterior

f |u,Z ∼ N (KXZK−1ZZu︸ ︷︷ ︸
predictive mean

,KXX −KXZK−1ZZKZX︸ ︷︷ ︸
predictive covariance

) (6)

4 K. Blomqvist et al.

where KXX ∈ Rn×n is the kernel between observed image pairs X, the kernel
KXZ ∈ Rn×M is between observed images X and inducing images Z, and kernel
KZZ ∈ Rm×m is between inducing images Z. [28]

2.3 Variational inference

Exact inference in a GP entails optimizing the evidence p(y) = Ep(f)[p(y|f)]
which has a limiting cubic complexity O(n3) and is in general intractable. We
tackle this restriction by applying stochastic variational inference (SVI) [13].

We define a variational approximation

q(u) = N (u|m,S) (7)

q(f) =

∫
p(f |u)q(u)du (8)

= N (f |Am,Kff + A(S−Kzz)AT)

A = KfzK
−1
zz

with free variational parameters m ∈ Rm and a matrix S � 0 ∈ Rm×m to
be optimised. It can be shown that minimizing the Kullback-Leibler divergence
KL[q(u)||p(u|y)] between the approximative posterior q(u) and the true poste-
rior p(u|y) is equivalent to maximizing the evidence lower bound (ELBO) [2]

L =

n∑
i=1

Eq(fi)[log p(yi|fi)]−KL[q(u)||p(u)] (9)

The variational expected likelihood in L can be computed using numerical
quadrature approaches [13].

3 Deep convolutional Gaussian process

In this section we introduce the deep convolution Gaussian process. We stack
multiple convolutional GP layers followed by a GP classifier with a convolutional
kernel.

3.1 Convolutional GP layers

We assume an image representation f `c ∈ RW`×H` of width W` and height H`

pixels at layer `. We collect C` channels into a 3D tensor f ` = (f `1 , . . . , f
`
C) ∈

RH`×W`×C` , where the channels are along the depth axis. The input image f0 = x
is the W0 × H0 × C0 sized representation of the original image with C color
channels. For instance MNIST images are of size W = H = 28 pixels and have
a single C = 1 grayscale channel.

We decompose the 3D tensor f ` into patches f `[p] ∈ Rw`×h`×C` containing
all depth channel. h` and w` are the height and width of the image patch at

Deep convolutional Gaussian processes 5

Fig. 1: A three layer deep convolutional gaussian process. First we construct an
intermediate probabilistic representation of size W1 × H1 × C1. We map this
probabilistic representation through another convolutional GP layer yielding a
representation of size W2 × H2 × C2. Finally, we classify using a GP with a
convolutional kernel by summing over patches of the intermediate representation.

layer `. We index patches by p ∈ Z < H`W`. H` and W` denotes the height and
width of the output of layer `. We compose a sequence of layers f ` that map the
input image xi to the label yi:

xi = f0︸ ︷︷ ︸
W0×H0×3

g1

−→ f1︸︷︷︸
W1×H1×C1

· · · gL

−−→ fL︸︷︷︸
Cy

≈ yi︸︷︷︸
{0,1}Cy

. (10)

Layers f ` with ` ≥ 1 are random variables with probability densities p(f `).
We construct the layers by applying convolutions of patch response functions

g`
c : Rw`−1×h`−1×C`−1 → R over the input one patch at a time producing the

next layer representation:

f `[p] =

g
`
1(f `−1[p])

...
g`C(f `−1[p])

 ∈ RC (11)

Each individual patch response g`(f `−1[p]) is a 1×1×C pixel stack. By repeating
the patch responses over the P`−1 = W`×H` patches we form a new W`×H`×C`

representation f ` = (f `[1], . . . , f `[P`−1]) (See Figure 1).
We model the C patch responses at each of the first L− 1 layers as indepen-

dent GPs with shared prior

g`c(f
`−1[p]) ∼ GP

(
0, k(f `−1[p], f ′`−1[p′])

)
(12)

for c = 1, . . . , C. The kernel k(·, ·) measures the similarity of two image patches.
The standard property of Gaussian processes implies that the functions g`c output
similar responses for similar patches.

6 K. Blomqvist et al.

Fig. 2: UMAP embeddings [23] of the CIFAR-10 images and representations after
each layer of the deep convolutional GP model. The colors correspond to different
classes in the classification problem.

Fig. 3: UMAP embeddings of randomly selected patches of the input to the layer
and learned inducing points of the fitted three layer model on CIFAR-10.

For example, on MNIST where images have size 28 × 28 × 1 using patches
of size 5 × 5 × 1, a stride of 1 and C = 10 patch response functions, we obtain
a representation of size 24 × 24 × 10 after the first layer (height and width
W1 = H1 = (28− 5)/1 + 1). This is passed on to the next layer which produces
an output of size 20× 20× 10.

We follow the sparse GP approach of [13] and augment each patch response
function by a set of M inducing patches z` in the patch space Rh`−1×w`−1×C`−1

with corresponding responses u`c. Each layer contains M` inducing patches Z` =
(z`1, . . . , z

`
M) which are shared among the C patch response functions within

that layer. Each patch response function has separate inducing responses u`
c =

(u`c1, . . . , u
`
cM) which associate outputs to each inducing patch. We collect these

into a matrix U`.

The conditional patch responses are

g`c|f `−1,u`
c,Z

` ∼ N (µ, Σ) (13)

µ = Kf`−1Z`K−1
Z`Z`u

`
c

Σ = Kf`−1f`−1 −Kf`−1Z`K−1
Z`Z`KZ`f`−1 ,

Deep convolutional Gaussian processes 7

(a) Layer 1 (b) Layer 2 (c) Layer 3

Fig. 4: Example inducing points Z pictured from all three layers from the CIFAR-
10 experiment. The first layer inducing points channels correspond to color chan-
nels and are thus in color. For layers 2 and 3 only a single channel is visualized.

where the covariance between the input and the inducing variables are

K(f `−1,Z`) =

k(f `−1[1], z`1) · · · k(f `−1[1], z`M)
...

. . .
...

k(f `−1[P], z`1) · · · k(f `−1[P], z`M)

a matrix of size P` ×M` that measures the similarity of all patches against all
filters z`. We set the base kernel k to be the RBF kernel. For each of the C patch
response functions we obtain one output image channel.

The conditional for each layer can be evaluated in O(P ` ·N · (M `)2), where
N is the data points being evaluated, P ` the amount of patches ` and M ` the
amount of inducing points at layer `.

In contrast to neural networks, the Gaussian process convolutions induce
probabilistic layer representations. The first layer p(f1|f0,U1,Z1) is a Gaussian
directly from (13), while the following layers follow non-Gaussian distributions
p(f `+1|U`+1,Z`+1) since we map all realisations of the random input f ` into
Gaussian outputs f `+1.

3.2 Final classification layer

As the last layer of our model we aggregate the output of the convolutional layers
using a GP with a weighted convolutional kernel as presented by [33]. We set a
GP prior on the last layer patch response function

gL
(
fL−1[p]

)
∼ GP(0,K(fL−1[p], f ′L−1[p′])). (14)

8 K. Blomqvist et al.

with weights for each patch response. We get an additive GP

fL = gL(fL−1) =

P∑
p=1

wpg
L(fL−1[p])

∼ GP

(
0,

P∑
p=1

P∑
p′=1

wpwp′k(fL−1[p], f ′L−1[p′])︸ ︷︷ ︸
K(x,x′)

)
,

where the kernel K(fL−1, f ′L−1) = wTKw is the weighted average patch simi-
larity of the final tensor representation fL−1. w ∈ RP . The matrix K collects all
patch similarities K(fL−1[p], f ′L−1[p′]). The last layer has one response GP per
output class c.

As with the convolutional layers the inducing points live in the patch space
of instead of in the image space. The inter-domain kernel is

K(fL−1, zL) =

P∑
p=1

wpK(x[p], zL) (15)

= wTk(fL−1, zL). (16)

The kernel k(fL−1, zL) ∈ RP collects all patch similarities of a single image fL−1

compared against inducing points zL. The covariance between inducing points
is simply K(zL, z′L). We have now defined all kernels necessary to evaluate and
optimize the variational bound (9).

3.3 Doubly stochastic variational inference

The deep convolutional Gaussian process is an instance of a deep Gaussian pro-
cess with the convolutional kernels and patch filter inducing points. We follow
the doubly stochastic variational inference approach [27] for model learning. The
key idea of doubly stochastic inference is to draw samples from the Gaussian

f̃ `i ∼ p(f `i |f̃ `−1i ,U`,Z`) (17)

through the deep system for a single input image xi.
The inducing points of each layer are independent. We assume a factorised

likelihood

p(Y|FL) =

N∏
i=1

p(yi|fLi) (18)

and a true joint density

p({f `,U`}`) =

L∏
`=1

p(f `|f `−1,U`,Z`)p(U`) (19)

p(U`) =

C∏
c=1

N (u`
c|0,KZ`Z`). (20)

Deep convolutional Gaussian processes 9

The evidence framework [20] considers optimizing the evidence,

p(Y) = Ep(F)p(Y|F). (21)

Following the variational approach we assume a variational joint model

q(U`) =

C∏
c=1

N (u`
c|m`

c,S
`
c) (22)

q
(
{f `,U`}`

)
=

L∏
`=1

p(f `|f `−1,U`,Z`)q(U`). (23)

The distribution of the layer predictions f ` depends on current layer inducing
points U`,Z` and representation f `−1 at the previous layer. By marginalising the
variational approximation q(U`) we arrive at the factorized variational posterior
of the last layer for individual data point xi,

q(fLi ; {m`,S`,Z`}`) =

L−1∏
`=1

∫
q(f `i |f `−1i ,ml,S`,Z`)df `i , (24)

where we integrate all paths (f1i , . . . , f
L
i) through the layers defined by the filters

Z`, and the parameters m`,S`. Finally, the doubly stochastic evidence lower
bound (ELBO) is

log p(Y) ≥
N∑
i=1

Eq(fLi ;{m`,S`,Z`}`)[log p(yi|fLi)] (25)

−
L∑

`=1

KL[q(U`)||p(U`)].

The variational expected likelihood is computed using a Monte Carlo approxima-
tion yielding the first source of stochasticity. The whole lower bound is optimized
using stochastic gradient descent yielding the second source of stochasticity.

The Figure 2 visualises representations of CIFAR-10 images over the deep
convolutional GP model. Figure 3 visualises the patch and filter spaces of the
three layers, indicating high overlap. Finally, Figure 4 shows example filters z
learned on the CIFAR-10 dataset, which extract image features.

Optimization All parameters {m`}L`=1, {S`}L`=1, {Zl}L`=1, the base kernel RBF
lengthscales and variances and the patch weights for the last layer are learned
using stochastic gradient Adam optimizer [15] by maximizing the likelihood lower
bound. We use one shared base kernel for each layer.

3.4 Stochastic Gradient Hamiltonian Monte Carlo

An alternative to the variational posterior approximations q(u) is to use Markov
Chain Monte Carlo (MCMC) sampling of the true posterior p(u|y), where we

10 K. Blomqvist et al.

denote with u = {U`}L`=1 all inducing values of all layers. We use the Stochastic
Gradient Hamiltonian Monte Carlo (SG-HMC) to produce samples from the true
posterior [4]. The SG-HMC can reveal the possibly multimodal and non-Gaussian
inducing distributions, while the variational approximation is usually limited to
Gaussian approximations. We follow the SG-HMC approach introduced for deep
Gaussian processes [12].

In Hamiltonian Monte Carlo an auxiliary variable v is introduced and we
sample from the augmented posterior

p(u,v|y) ∝ exp

(
−U(u)− 1

2
vM−1v

)
(26)

U(u) = − log p(u|y), (27)

which corresponds to a Hamiltonian with U representing potential energy and v
representing kinetic energy. HMC requires computation of the gradient ∇U(u),
which is prohibitive for large datasets. In Stochastic Gradient HMC the gradients
can be computed over minibatches of data, resulting in update equations

∆u = εM−1v (28)

∆v = −ε∇U(u)− εCM−1v +N (0, 2ε(C − B̂)), (29)

where C is the friction term, ε is the stepsize, M is the mass matrix, and B̂ is
the Fisher information matrix. We use an auto-tuning approach of [29] to select
these parameters, following [12]. To compute ∇U(u) we use stochastic samples
fL(s) ∼ p(f

L) to approximate the final layer predictive distribution p(fL). Finally,
to also optimize the hyperparameters, we use the Monte Carlo Expectation Max-
imization (MCEM) technique [32], following [12].

4 Experiments

We compare our approach on the standard image classification benchmarks of
MNIST and CIFAR-10 [17], which have standard training and test folds to facili-
tate direct performance comparisons. MNIST contains 60,000 training examples
of 28×28 sized grayscale images of 10 hand-drawn digits, with a separate 10,000
validation set. CIFAR-10 contains 50,000 training examples of RGB colour im-
ages of size 32 × 32 from 10 classes, with 5,000 images per class. The images
represents objects such as airplanes, cats or horses. There is a separate vali-
dation set of 10,000 images. We preprocess the images for zero mean and unit
variance along the color channel.

We compare our model primarily against the original shallow convolutional
Gaussian process [33], which is currently the only convolutional Gaussian process
based image classifier. We also consider the performance of the hybrid neural
network GP approach [37]. For completeness we report the performance of a
state-of-the-art CNN method DenseNet [14].

Deep convolutional Gaussian processes 11

Table 1: Performance on MNIST and CIFAR-10. Our method, the deep convo-
lutional Gaussian process, is denoted DeepCGP. Asterisk (∗) indicates results
taken from the respective publications, which are directly comparable due to
standard data folds. Other results are run using our implementation. The neural
network based results are listed for completeness. The four layer CNN has two
5x5 convolutional layers (64 filters, strides 2 and 1), two fully connected layers
and ReLu activations.

Inducing Test accuracy

Gaussian process models Layers points MNIST CIFAR-10 Reference

RBF AutoGP 1 200 98.29(∗) 55.05(∗) [16]

Multi-channel conv GP 1 1000 98.83(∗) 64.6(∗) [33]
DeepCGP 1 384 98.38 58.65 current work
DeepCGP 2 2× 384 99.24 73.85 ”
DeepCGP 3 3× 384 99.44 75.89 ”

Neural network models Layers # params

Four layer CNN 4 1.7M 98.53 63.54

Deep kernel learning 5 2.3M .. 4.6M 99.2(∗) 77.0(∗) [37]

DenseNet 250 15.3M N/A 94.81(∗) [14]

Implementation. Our TensorFlow [1] implementation is compatible with the
GPflow framework [22] and freely available online2. We leverage GPU accelerated
computation, 64bit floating point precision, and employ a minibatch size of 32.
We start the Adam learning rate at 0.01 and multiply it by 0.1 every 100,000
optimization steps until the learning rate reaches 1e-5. We use M = 384 inducing
points at each layer. We set a stride of 2 for the first layer and 1 for all other
layers. The convolutional filter size is 5x5 on all layers except for the first layer
on CIFAR-10 where it is 4x4. This is to make use of all the image pixels using
a stride of 2.

Parameter initialization. Inducing points Z are initialized by running k-means
with M clusters on image patches from the training set. The variational means m
are initialised to zero. S are initialised to a tiny variance kernel prior 10−5 ·KZZ

following [27], except for the last layer where we use KZZ. For models deeper
than two layers, we employ iterative optimisation where the first L − 2 layers
and layer L are initialised to the learned values of an L − 1 model, while the
one additional layer added before the classification layer is initialised to default
values.

2 https://github.com/kekeblom/DeepCGP

https://github.com/kekeblom/DeepCGP

12 K. Blomqvist et al.

Fig. 5: Reliability curves with 5 bins for the 3 layer DeepCGP model and the 4
layer CNN on the CIFAR-10 test set. For the DeepCGP model, we average the
probabilities over 25 samples of the output. We cast the classification problem
as a binary one-vs-rest classification problem by summing the probabilities of
the negative classes obtaining one calibration curve for each image class.

4.1 MNIST and CIFAR-10 results

Table 1 shows the classification accuracy on MNIST and CIFAR-10. Adding
a convolutional layer to the weighted convolutional kernel GP improves perfor-
mance on CIFAR-10 from 58.65% to 73.85%. Adding another convolutional layer
further improves the accuracy to 75.9%. On MNIST the performance increases
from 1.42% error to 0.56% error with the three-layer deep convolutional GP.

The deep kernel learning method uses a fully connected five-layer DNN in-
stead of a CNN, and performs similarly to our model, but with much more
parameters.

Figure 6 shows a single sample for 10 image class examples (rows) over the
10 patch response channels (columns) for the first layer (panel a) and second
layer (panel b). The first layer indicates various edge detectors, while the second
layer samples show the complexity of pattern extraction. The row object classes
map to different kinds of representations, as expected.

Figure 2 shows UMAP embedding [23] visualisations of the image space of
CIFAR-10 along with the structure of the layer representations f `i for three layers.
The original images do not naturally cluster into the 10 classes (a). The Deep-
CGP model projects the images to circle shape with some class coherence in the
intermediate layers, while the last layer shows the classification boundaries. An
accompanying Figure 4 shows the learned inducing filters and layer patches on
CIFAR-10. Some regions of the patch space are not covered by filters, indicating
uninformative representations.

Figure 7 shows the effect of different channel numbers on a two layer model.
The ELBO increases up to C = 16 response channels, while starts to decrease
with C = 32 channels. A model with approximately C = 10 channels indicates
best performance.

Figure 5 shows that the deep convolutional GP model has better calibration
than a neural CNN model. CNN model results in badly calibrated class prob-

Deep convolutional Gaussian processes 13

(a) Samples from the first layer. (b) Samples from the second layer.

Fig. 6: (a) and (b) show samples the first two layers of the three layer model. Rows
corresponds to different test inputs and columns correspond to different patch
response functions, which are realisations of the layer GPs. The first column
shows the input image. The first layer seems to learn to detect edges, while
the second layer appears to learn more abstract correlations of features and the
representation produced no longer resembles the input image, indicating high-
level feature extraction.

abilities especially between 0.2 and 0.8 prediction probability. The GP based
model has more consistent calibration over the probability range.

5 Conclusions

We present a new type of deep Gaussian process with convolutional structure.
The convolutional GP layers gradually linearize the data using multiple filters
with nonlinear kernel functions. Our model greatly improves test results on the
compared classification benchmarks compared to other GP-based approaches,
and approaches the performance of hybrid neural-GP methods. The performance
of our model seems to improve as more layers are added. We leave experimenting
with deeper models for future work.

Convolutional neural networks have been shown to provide unreliable uncer-
tainty estimates [31]. We showed that our model provides more accurate class
probability estimates than an equivalent deep convolutional neural network.

Deep Gaussian process models lead to degenerate covariances, where each
layer in the composition reduces the rank or degrees of freedom of the system
[7]. In practise the rank reduces via successive layers mapping inputs to identical
values, effectively merging inputs and resulting in rank-reducing covariance ma-
trix with repeated rows and columns. To counter this pathology rank-preserving
deep model was proposed by pseudo-monotonic layer mappings with GP priors

14 K. Blomqvist et al.

Fig. 7: Expected evidence lower bound computed on the training set using a two
layer model for different amounts of patch response functions. The models with
10 and 16 patch response functions seem to perform the best. Models with one
or two patch response functions struggle to explain the data even though they
have the same amount of inducing points.

f(x) ∼ GP(x, k) with identity means E[f(x)] = x [27]. In contrast we employ
zero-mean patch response functions. Remarkably we do not experience rank de-
generacy, possibly due to the multiple channel mappings and the convolution
structure.

The convolutional Gaussian process is still limited by the computationally
expensive inference. The SG-HMC improves over variational inference, while an
another avenue for improvement lies in kernel interpolation techniques [36,9],
which would make inference and prediction faster. We leave further exploration
of these directions as future work.

Acknowledgements We thank Michael Riis Andersen for his invaluable com-
ments and helpful suggestions.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine
learning. In: OSDI. vol. 16, pp. 265–283 (2016)

2. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: A review for
statisticians. Journal of the American Statistical Association 112(518), 859–877
(2017)

3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. In: International Conference on Machine Learning. pp. 1613–1622
(2015)

Deep convolutional Gaussian processes 15

4. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient hamiltonian monte carlo. In:
International Conference on Machine Learning. pp. 1683–1691 (2014)

5. Damianou, A., Lawrence, N.: Deep gaussian processes. In: AISTATS. PMLR,
vol. 31, pp. 207–215 (2013)

6. Dutordoir, V., van der Wilk, M., Artemev, A., Tomczak, M., Hensman, J.: Trans-
lation insensitivity for deep convolutional gaussian processes. arXiv:1902.05888
(2019)

7. Duvenaud, D., Rippel, O., Adams, R., Ghahramani, Z.: Avoiding pathologies in
very deep networks. In: AISTATS. PMLR, vol. 33, pp. 202–210 (2014)

8. Duvenaud, D.K., Nickisch, H., Rasmussen, C.E.: Additive gaussian processes. In:
Advances in neural information processing systems. pp. 226–234 (2011)

9. Evans, T.W., Nair, P.B.: Scalable gaussian processes with grid-structured eigen-
functions (GP-GRIEF). In: International Conference on Machine Learning (2018)

10. Garriga-Alonso, A., Aitchison, L., Rasmussen, C.E.: Deep convolutional networks
as shallow gaussian processes. In: ICLR (2019)

11. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1. MIT
press Cambridge (2016)

12. Havasi, M., Lobato, J.M.H., Fuentes, J.J.M.: Inference in Deep Gaussian Processes
using Stochastic Gradient Hamiltonian Monte Carlo. NIPS (2018)

13. Hensman, J., Matthews, A., Ghahramani, Z.: Scalable variational gaussian process
classification. In: AISTATS. PMLR, vol. 38, pp. 351–360 (2015)

14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR. vol. 1, p. 3 (2017)

15. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: ICLR
(2014)

16. Krauth, K., Bonilla, E.V., Cutajar, K., Filippone, M.: AutoGP: Exploring the
capabilities and limitations of Gaussian process models. In: Uncertainty in Artificial
Intelligence (2017)

17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

18. Kumar, V., Singh, V., Srijith, P., Damianou, A.: Deep gaussian processes with
convolutional kernels. arXiv preprint arXiv:1806.01655 (2018)

19. Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J., Sohl-Dickstein, J.:
Deep neural networks as gaussian processes. In: ICLR (2018)

20. MacKay, D.J.: A practical bayesian framework for backpropagation networks. Neu-
ral computation 4, 448–472 (1992)

21. Mallat, S.: Understanding deep convolutional networks. Phil. Trans. R. Soc. A
374(2065), 20150203 (2016)

22. Matthews, A.G.d.G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A.,
León-Villagrá, P., Ghahramani, Z., Hensman, J.: GPflow: A Gaussian process li-
brary using TensorFlow. Journal of Machine Learning Research 18, 1–6 (2017)

23. McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. ArXiv e-prints (Feb 2018)

24. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced lectures
on machine learning, pp. 63–71. Springer (2004)

25. Rasmussen, C.E., Williams, C.K.: Gaussian process for machine learning. MIT
press (2006)

26. Remes, S., Heinonen, M., Kaski, S.: Non-stationary spectral kernels. In: Advances
in Neural Information Processing Systems. pp. 4642–4651 (2017)

16 K. Blomqvist et al.

27. Salimbeni, H., Deisenroth, M.: Doubly stochastic variational inference for deep
gaussian processes. In: Advances in Neural Information Processing Systems. pp.
4588–4599 (2017)

28. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In:
Advances in neural information processing systems. pp. 1257–1264 (2006)

29. Springerberg, J., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with
robust bayesian neural networks. In: Advances in Neural Information Processing
Systems. pp. 4134–4142 (2016)

30. Sun, S., Zhang, G., Wang, C., Zeng, W., Li, J., Grosse, R.: Differentiable compo-
sitional kernel learning for gaussian processes. In: ICML. PMLR, vol. 80 (2018)

31. Tran, G.L., Bonilla, E.V., Cunningham, J.P., Michiardi, P., Filippone, M.: Cali-
brating deep convolutional gaussian processes. In: AISTATS. PMLR, vol. 89, pp.
1554–1563 (2019)

32. Wei, G., Tanner, M.: A monte carlo implementation of the em algorithm and the
poor man’s data augmentation algorithms. Journal of the American statistical
Association 85, 699–704 (1990)

33. Van der Wilk, M., Rasmussen, C.E., Hensman, J.: Convolutional gaussian pro-
cesses. In: Advances in Neural Information Processing Systems. pp. 2849–2858
(2017)

34. Williams, C.K.: Computing with infinite networks. In: Advances in Neural Infor-
mation Processing Systems. pp. 295–301 (1997)

35. Wilson, A., Gilboa, E., Nehorai, A., Cunningham, J.: Fast multidimensional pat-
tern extrapolation with gaussian processes. In: AISTATS. PMLR, vol. 31 (2013)

36. Wilson, A., Nickisch, H.: Kernel interpolation for scalable structured gaussian
processes (KISS-GP). In: International Conference on Machine Learning. PMLR,
vol. 37, pp. 1775–1784 (2015)

37. Wilson, A.G., Hu, Z., Salakhutdinov, R.R., Xing, E.P.: Stochastic variational deep
kernel learning. In: Advances in Neural Information Processing Systems. pp. 2586–
2594 (2016)

38. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In:
AISTATS. PMLR, vol. 51, pp. 370–378 (2016)

	Deep convolutional Gaussian processes

