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Abstract. Deep neural networks achieve state-of-the-art results in var-
ious classification and synthetic data generation tasks. However, only
little is known about why depth improves a model. We investigate the
structure of stochastic deep neural works, also known as Deep Boltzmann
Machines, to shed some light on this issue. While the best known results
postulate an exponential dependence between the number of visible units
and the depth of the model, we show that the required depth is upper
bounded by the longest path in the underlying junction tree, which is
at most linear in the number of visible units. Moreover, we show that
the conditional independence structure of any categorical Deep Boltz-
mann Machine contains a sub-tree that allows the consistent estimation
of the full joint probability mass function of all visible units. We connect
our results to l1-regularized maximum-likelihood estimation and Chow-
Liu trees. Based on our theoretical findings, we present a new tractable
version of Deep Boltzmann Machines, namely the Deep Boltzmann Tree
(DBT). We provide a hyper-parameter-free algorithm for learning the
DBT from data, and propose a new initialization method to enforce
convergence to good solutions. Our findings provide some theoretical ev-
idence for why a deep model might be beneficial. Experimental results on
benchmark data show, that the DBT is a theoretical sound alternative
to likelihood-free generative models.

Keywords: Deep Boltzmann Machine · Structure Learning · Generative
Model

1 Introduction

Modern applications of data science necessitate expressive, robust and efficient
probabilistic models, to capture the rich structure in complex data sets. These
models generally fall into two major categories: likelihood-based and likelihood-
free. The former explicitly assigns a likelihood function Pθ(X) with parameters
θ to describe the data X, while the latter learns a model from which samples
from the desired distribution may be drawn (but does not assign or learn a form
for the distribution itself). In this work, we study deep generative models w.r.t.
their structure, also known as network architecture.

Specifically, likelihood-free methods typically pass samples z from a pre-
specified simple distribution q(z) through a deterministic mapping G(z;θ) :
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Z → X , commonly known as the generator. While likelihood-free methods gain
a lot of attention, they lack theoretical insights on almost every fundamental
aspect, including model selection, parameter learning, and sample complexity.
Selecting the right model suffers from an countable infinite search space. In most
cases, training such generative adversarial networks [10] is cumbersome and in-
volves sophisticated hyper-parameter tuning strategies. However, generalization
bounds [18, 2, 9] which quantify the model’s error w.r.t. inherent properties, like
depth and width of the underlying neural network, can guide this process. Other
research directions try to bring likelihood and entropy back in implicitly defined
generative models [25, 13].

In contrast, likelihood-based methods enjoy theoretical insights and statisti-
cal guarantees, but suffer from a high computational complexity. To bridge the
gap between popular deep generative models and classic probabilistic models,
we consider Deep Boltzmann Machines (DBMs) [20] with arbitrary categorical
hidden state spaces, as a generic class of stochastic neural networks. They have
their roots in statistical physics and have been studied intensively as special
types of graphical model. In particular, information geometry has provided deep
geometric insights about learning and approximation of probability distributions
by this kind of networks. It is well known that general Boltzmann machines are
universal approximators of probability distributions over the states of their vis-
ible units, provided they have sufficiently many hidden units. Moreover, the
universal approximation capability has been shown for Restricted Boltzmann
Machines, provided their single hidden layer has exponentially more units than
the visible layer. In a similar way, universal approximation results for DBMs
suggest that the number of layers should be exponential in the number of visible
units [16].

However, practical deep models are far from having exponentially many lay-
ers, still providing superior quality. Driven by this apparent contradiction, we
study the structure of DBMs to gain new theoretical insights about deep proba-
bilistic models in general. Our findings guide us to a new model class: the Deep
Boltzmann Tree (DBT). Like a DBM, a DBT has one layer of visible (input)
units and multiple hidden layers, containing latent variables (Fig. 1). Unlike a
DBM, the structure of a DBT contains no loops, and thus, allows for tractable,
poly-time probabilistic inference.

Our contributions can be summarized as follows:

– We state a new universal approximation theorem for Deep Boltzmann Ma-
chines, which shows that the dependence between the number of layers and
the number of visible units is at most linear.

– We define a new, tractable type of deep probabilistic model: the Deep Boltz-
mann Tree. We show that DBTs are universal approximators and connect
them to results in structure learning.

– We provide hyper-parameter-free algorithms for constructing and learning
DBTs. Here, hyper-parameter-free means that “magic constants” like learn-
ing rate, model architecture, and hidden state space, are automatically deter-
mined from data. The proposed method has literally no tuneable parameter.
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Fig. 1. The conditional independence structure of a Deep Boltzmann Machine with
n0 = 8 visible units and 5 × 5 hidden units is shown in a). Dashed edges and white
neurons in c) and d) are not required to represent the full joint probability mass
function—they can be dropped by nullifying the corresponding edge weights θe ← 0.
The colored neuron in c) and d) both correspond to the DBT shown in b). Blue hidden
units copy the state of one visible unit to a deeper layer by setting the corresponding
edge weight θe to the identity function θid.

2 Notation and Background

Let us summarize the notation and background necessary for the subsequent
development. The Kullback-Leibler divergence between two probability mass
functions P and Q is defined by KL[Q‖P] =

∑
x∈X Q(x)(logQ(x) − logP(x)),

which is never negative and only zero if and only if P = Q. If f is a function,
f−1 refers to its inverse.

2.1 Graphical Models

An undirected graph G = (V,E) consists of n = |V | vertices, connected via edges
(v, w) ∈ E. For two graphs G1, G2, we write V (G1) and V (G2) to denote the
vertices of G1 and G2, respectively and similar E(G1) and E(G2) for the edges. A
clique C is a fully-connected subset of vertices, i.e., ∀v, w ∈ C : (v, w) ∈ E. The
set of all cliques of G is denoted by C. Here, any undirected graph represents the
conditional independence structure of an undirected graphical model or Markov
random field [24], shown in Fig. 2 a). To this end, we identify each vertex v ∈ V
with a random variable Xv taking values in the state space Xv. The random
vector X = (Xv : v ∈ V ), with probability mass function (pmf) P, represents
the random joint state of all vertices in some arbitrary but fixed order, taking
values x in the Cartesian product space X =

⊗
v∈V Xv. If not stated otherwise,

X is a discrete set. Moreover, we allow to access these quantities for any proper
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Fig. 2. The conditional independence structure a) of the underlying random variable
X is first converted to the junction tree b).

subset of variables S ⊂ V , i.e., XS = (Xv : v ∈ S), xS , and XS , respectively.
We write Cmax for the clique C that has the largest state space XC . According to
the Hammersley-Clifford theorem [11], the probability mass of X factorizes over
positive functions ψC : X → R+, one for each maximal clique of the underlying
graph,

P(X = x) =
1

Z

∏
C∈C

ψC(xC) , (1)

normalized via Z =
∑
x∈X

∏
C∈C ψC(xC). Due to positivity of ψC , it can be writ-

ten as an exponential, i.e., ψC(xC) = exp(〈θC , φC(xC)〉) with sufficient statistic
φC : XC → R|XC |. The overcomplete sufficient statistic of discrete data is a “one-
hot” vector that selects a specific weight value, e.g., ψC(xC) = exp(θC=xC

). The
full joint can be written in the famous exponential family form P(X = x) =
exp(〈θ, φ(x)〉 − logZ) with θ = (θC : C ∈ C) and φ(x) = (φC(xC) : C ∈ C).

The parameters of exponential family members are estimated by minimizing
the negative average log-likelihood `(θ;D) = −(1/|D|)

∑
x∈D logPθ(x) for some

data set D via first-order numeric optimization methods. D contains samples
from X, and it can be shown that the estimated probability mass converges to
the data generating distribution as the size of D increases. However, computing Z
and hence performing probabilistic inference is #P-hard [23, 4]. Exact inference
can be carried out via the junction tree algorithm. The junction tree representa-
tion of an undirected model is a tree, in which each vertex represents a maximal
clique of a chordal completion of G ([24], Sec. 2.5.2). The cutset of each pair
of adjacent clique-vertices is called separator. Here, we consider junction trees
which contain separators as explicit vertices, as shown in Fig. 2 b).

2.2 Deep Boltzmann Machines

Deep Boltzmann Machines are undirected graphical models for the joint proba-
bility mass of an “ordinary” random variableX and a latent variableH that rep-
resents a set of so-called hidden units. Latent means that the value of H cannot
be observed and is not contained in the data set D.
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a) b)

Fig. 3. Two different planar embeddings of the same
8-clique of binary hidden units. Both are equivalent to
a single discrete hidden unit with q = 28 states.

To estimate the param-
eters in the presence of la-
tent variables, expectation-
maximization [6] or con-
trastive divergence [20] tech-
niques must be applied.
In contrast to other undi-
rected models, the condi-
tional independence struc-
ture of DBMs is not learned
from data. Instead, the con-
nectivity between visible
and hidden units as well as
between hidden and hidden units is pre-specified and follows the multipartite lay-
ered structure that is well known from artificial neural feed-forward networks.
An exemplary DBM is shown in Fig. 1 a).

In most cases, the hidden units are assumed to have a binary state space.
This is, however, not necessary. We like to stress the fact that DBMs are plain
undirected models and as such, any vertex can have any state space. For now,
we consider so-called categorical DBMs, where all hidden units have the same
state space of size q. For convenience, such DBMs are called q-state DBMs. A
vertex with q states is called q-state unit.

Fixing the depth L, the width of each layer W = (n1, n2, . . . , nL), and the
state space size q defines a family of probability mass functions ML,W,H . To
measure the expressive power of such a family, we resort to the same notion of
approximation guarantee that is used in the DBM literature, e.g., [16].

Definition 1 (Universal Approximation). A setM of probability mass func-
tions on X is called universal approximator when, for any probability mass Q on
X and any ε > 0, there is a pmf P in M with KL[Q‖P] ≤ ε.

An obvious question is which choices of L, W , and q make a DBM an uni-
versal approximator. A rather indirect way to explain this is the identification
of settings in which the (undirected) DBM can be treated as if it is a directed
(feed-forward) network [14, 15]. While the required proof technique is rather
cumbersome and mathematically involved, this point of view paves the way to
the best currently known result on the depth of DBMs:

Theorem 1 (DBMs are Universal Approximators with Exponential
Dependence on n0 [15]). Let M be a q-state DBM with n0 q-state visible
units and L hidden layers of n0 units each. Let further X = (X1,X2, . . . ,Xn0)
be the random variable that represents all visible units. Then, M is a uni-
versal approximator for P(X) provided L is large enough. More precisely, for
any n0 ≤ n := qk + k + 1, for some k ∈ N, a sufficient condition is L ≥
1 + (qn + 1)/(q(q − 1)(n− logq(n)− 1)). For any n0, a necessary condition is
L ≥ (qn0 − 1)/(n0(q − 1)(n0(q − 1) + 2)).
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Fig. 4. An exemplary Deep Boltzmann Tree with 8
visible units (blue), 4 hidden clique-units (green), and
3 hidden separator-units (grey). The separator-hidden
units are annotated with the separating vertices, i.e.,
with the intersection of their incident cliques in the
underlying junction tree.

A closer look at the nec-
essary condition suggests
that this result is rather
pessimistic: for n0 = 16 and
q = 2, we have L ≥ 227—
a fairly deep model for 16
binary inputs. Considering
an MNIST-scale binary in-
put, i.e., n0 = 784, we have
L ≥ 1.6511 × 10230—an as-
tronomically deep network
when compared to state-
of-the-art architectures [12,
22].

A disturbing fact about
the above theorem is that a
larger latent state space, i.e., increasing q, does not decrease the required depth
of the network. Instead, the theorem tells us that a deeper network is required.
This is especially odd because a single hidden unit with q = bk states can be
reinterpreted as a fully connected set of k hidden units having b states each.
As shown in Fig. 3, we can rearrange the clique to emulate 2 DBM layers with
inter-layer connections. Thus, increasing the state space of hidden units is equiv-
alent to increasing the depth! Hence, a meaningful lower bound on the depth
of a network should decrease with the expressivity of the hidden units. Driven
by this observation, we exploit classic insights about conditional independence
structures to derive a new model class as well as new theoretical insights on the
depth of q-state DBMs.

3 Deep Boltzmann Trees

Deep learning architectures are ubiquitous, mostly application specific, and val-
idated on benchmark data. Theoretical justifications are usually replaced by
superior benchmark results. Stochastic DBM-based architectures inherit their
computational complexity from ordinary graphical models which renders exact
inference intractable and forces the user to resort to Markov chain Monte Carlo
techniques [21].

In contrast, we present a generic deep architecture that can be learned from
data. In what follows, we explain the learning procedure and prove that the
learned model can approximate the true underlying probability mass function
with arbitrary small error. As a by-product, we obtain the best known bounds
on the depth required by any q-state DBM to be an universal approximator.

Our proposed model class is called Deep1 Boltzmann Tree. The algorithmic
procedure for the construction of DBTs is provided in Alg. 1. An exemplary DBT

1 It turns out that DBTs consist of exactly two hidden layers. While this kind of depth
seems rather “shallow”, original work on DBMs [20] define the DBM as a restricted
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Algorithm 1: Constructing the Deep Boltzmann Tree

Require: Conditional independence structure G
1: J ← Junction tree of G
2: V ← V (J)
3: E ← E(J)
4: for clique vertices C ∈ J do
5: for vertices v ∈ C do
6: if v 6∈ V then
7: E ← E ∪ {(v, C)}
8: V ← V ∪ {v}
9: end if

10: end for
11: end for
12: return T = (V,E) // The DBT

is shown in Fig. 4. While the DBT architecture relies heavily on the junction tree
structure, it is important to understand that all vertices inherited from J (line 2
of Alg. 1) represent hidden units (latent variables) in the DBT. This difference
is of utmost importance: plain junction tree models enforce clique states which
do not appear in the training data to be unlikely. Instead, DBTs are capable of
learning that the probability mass of unknown states is similar to that of some
known states.

Moreover, we make no use of specialized junction tree inference algorithms,
like Shafer-Shenoy algorithm or Hugin algorithm [24]. The asymptotic runtime of
Alg. 1 is TIME(JT)+O(n|Cmax|), where TIME(JT) is the runtime of the junction
tree construction and |Cmax| is 1 plus the tree-width of the input graph. Here, an
(NP-complete) minimum chordal completion is not required—any non-minimal
poly-time triangulation suffices.

The joint pmf of visible and hidden units can then be written as

PT (X = x,H = h) =
1

ZT

∏
(u,C)∈EUC

ψ(u,C)(xu,hC)
∏

(C,S)∈ECS

ψ(C,S)(hC ,hS) ,

(2)
where EUC = E(T )∩U ×C, ECS = E(T )∩C×S, V (T ) = U ∪C ∪S, U being the
set of visible units, C being the set of hidden clique-units, and S being the set
of hidden separator-units—visualized in Fig. 4 by blue, green, and grey vertices,
respectively. The random variable H represents the random joint realization
of all hidden (green and grey) units. Note that Eq. 2 arises from the general
factorization of undirected graphical models Eq. 1, having maximal cliques of
size two only.

Being an undirected graphical model, the DBT pmf can be written in expo-
nential family form, and as such, it obeys a canonical parametrization in terms

Boltzmann machine which has more than one hidden layer. Thus, to be consistent
with the common terminology, we decided to denote our proposed model as “deep”.
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of edge weights. We will now exploit this parametrization to declare universal
approximation for any DBT with sufficiently large hidden state space.

Theorem 2 (Deep Boltzmann Trees are Universal Approximators). Let
PG be the full joint pmf of the random variable X with conditional independence
structure G. Let further T be the output of Alg. 1. When the state space of each
DBT hidden unit is at least |XCmax

|, then there exists a canonical weight vector
θ, such that

KL[PG‖P′T ] ≤ ε

for any ε > 0 and with P′T (x) =
∑
h PT (x,h).

Proof. Let θUC = (θ(v,C) : EUC) with EUC = E(T ) ∩ U × C contain all DBT
weight vectors for edges that connect a visible vertex with a clique vertex. In a
similar way, let θCS = (θ(C,S) : ECS) with ECS = E(T )∩ C ×S contain all DBT
weight vectors for edges that connect a clique vertex with a separator vertex.
Finally, let θ∗ = (θC : C is maximal clique in chordal completion of G) denote
the clique weights of a chordal completion of G. In other words, θ∗ contains
the junction tree weights. We will now choose values for θUC and θCS which
guarantee the conclusion of the theorem.

Any hidden unit of T corresponds to a clique or separator vertex of the
junction tree. Each hidden clique-unit F ∈ V (T ) is connected to visible units
and hidden separator-units only. We do now abuse notation and identify F with
the union of its visible neighbors and the content of their neighboring hidden
separator-units. E.g., if F = D in Fig. 4, we have F = {3, 5, 8}.

Let us fix some constant ω ∈ R+. We will now assign two types of edge
weights to any hidden clique-unit F :

(I) Each hidden clique-unit is incident to exactly one edge of type I—it is irrele-
vant which of the incident edges. Type I edges simulate the original junction
tree weight θ∗F of the junction tree vertex F . The precondition of the theo-
rem guarantees that the state space of the DBT unit F is at least as large
as the state space of the corresponding clique in the chordal completion of
G. Thus, there exist an injective function ρ, that maps the joint state of F ’s
neighbors to exactly one of F ’s states. Assume that v is a neighbor of F
and consider the edge (v, F ). When (v, F ) is a type I edge, then, for each
weight θ(v=x,F=y) we have θ(v=x,F=y) = θ∗F=y if and only if ρ−1(y)v = x,
e.g., the joint state of F ’s neighbors that corresponds to y agrees with v = x.
Otherwise, we have θ(v=x,F=y) = −ω. Moreover, for all weights θ(v=x,F=y′)

which correspond to hidden states y′ that have no corresponding joint state,
i.e., when the hidden state space is larger than the number of clique states,
we set θ(v=x,F=y′) = −ω.

(II) When (v, F ) is a type II edge, then, for each weight θ(v=x,F=y) we have
θ(v=x,F=y) = 0 if and only if ρ−1(y)v = x. Otherwise, we have θ(v=x,F=y) =
−ω. Again, we set all weights θ(v=x,F=y′) which correspond to hidden states
y′ that have no corresponding joint state to −ω.
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For both edge types, we call edge states whose weight is −ω not realizable, and
otherwise realizable. The concept of realizable edge states extends naturally to
full joint states, i.e., whenever a joint state (x,h) of visible and hidden units
contains at least one not realizable edge state, (x,h) itself is not realizable. Let
R denote the set of all realizable joint states and R its complement. Having that
said, let us investigate the partition function ZT of (Eq. 2):

ZT =
∑
(x,h)

∏
(u,C)∈EUC

ψ(u,C)(xu,hC)
∏

(C,S)∈ECS

ψ(C,S)(hC ,hS) .

Now, partition the summation w.r.t. realizability, and observe that each factor
of a realizable joint state is either exp(0) = 1 or exp(θ∗F=ρ(xF )):

ZT =
∑
x

∏
F

exp(θ∗F=ρ(xF )) +∑
(x,h)∈R

∏
(u,C)∈EUC

ψ(u,C)(xu,hC)
∏

(C,S)∈ECS

ψ(C,S)(hC ,hS) .

In the limit of ω → ∞, the sum over not realizable states vanishes (because
exp(−ω)→ 0) and ZT converges to the partition function of the ordinary junc-
tion tree factorization. In the same way, limω→∞ PT (x,h) converges either to
0 whenever (x,h) ∈ R, or to PJ(x) whenever (x,h) ∈ R. Since the junc-
tion tree pmf PJ is identical to the original undirected model PG, we have
limω→∞

∑
h PT (x,h) = PG(x). Thus, for any ε > 0, there exists ω > 0 such

that KL[PG‖P′T ] ≤ ε. ut
The theorem tells us that it is always possible to find DBT weights θ which

make the approximation error arbitrarily small as long as the DBT’s latent state
space is large enough. Surprisingly, the result carries over to q-state DBMs. The
idea is to embed the DBT into the DBM as visualized in Fig. 1 c) and d).

Theorem 3 (DBMs are Universal Approximators with Linear Depen-
dence on n0). Let M be a q-state DBM with n0 visible units and L hidden
layers of n0 units each. Let further X be the random variable that represents all
visible units. Then, M is a universal approximator for P(X) provided L and q
are large enough. More precisely, if q ≥ |XCmax

|, it suffices that L ≥ 2.

Proof. Notice that the output T of Alg. 1 is an especially simple tripartite graph,
indicated by the coloring in Fig. 4. By identifying the visible units of T with
the visible units of M , the remainder is a bipartite graph that consists of hidden
clique-units and hidden separator-units. The precondition of the theorem asserts
that each hidden layer has n0 units. Each hidden clique-unit of T arises from some
maximal clique of a chordal completion of the true conditional independence
structure ofX. The number of maximal cliques in a chordal graph with n vertices
is at most n [7]. Thus, T has at most n0 units per layer. Since each pair of hidden
DBM layers forms a complete bipartite graph, it is straightforward to embed the
two hidden layers of T into the first two layers of M (visualized in Fig. 1 d)).
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Finally, setting all edge weights θe of some edge e to the all-zero vector 0, implies
that the corresponding edge potential ψe(xe) is 1 for all choices of xe—the edge
e is effectively removed from the undirected model. Thus, all edges which are
not required to embed T into M can be removed. Together with Theorem 2, this
shows that there exists a canonical weight vector θ for the DBM which induces
a probability mass that is arbitrarily close to the true pmf of X. Hence, M is
an universal approximator. ut

Note, however, that this result is not contradictory to Theorem 1. Our theo-
rem does not assume that observed and hidden units have the same state space.
In our setting, the latent state space and thus, the complexity of the learned
activation functions, is allowed to vary with the complexity of the input data.
This is an important difference to ordinary feed-forwards architectures where
the functional form of the activation functions is usually fixed.

While the theorem shows a constant dependence of the depth on the number
of visible units, the dependence of the width is still linear. Inspecting the proof
reveals that even the “vertical” worst-case embedding (Fig. 1 c)) of any DBT
into the corresponding DBM can be realized as long as L ≥ 2n0 − 1—a linear
worst-case depth. This suggests that no DBM must be deeper than 2n0−1 layers
as long as the hidden units are expressive enough to cover the underlying clique
potentials. Motivated by this observation, we state the following conjecture:

Conjecture 1 (The Depth of Deep Networks). DBMs with more than two hidden
layers are only required if the underlying learning algorithm cannot find a shallow
DBT embedding into the DBM structure.

Results on model compression suggest that shallow networks can be on par
with state-of-the-art deep models [3, 1]. Such results rely on specialized training
procedures, but finding a superior shallow solution directly might not be easy
for the learning algorithm. Indeed, learning the weights of DBMs and other
deep architectures suffers from various local minima—the 2-layer solution from
Theorem 3 is only one of them. Which solution is learned eventually depends
crucially on the weight initialization [8].

Another interesting fact is that the proof tells us how DBT learning is con-
nected to classic and recent structure learning techniques.

Corollary 1 (Chow-Liu DBM). Consider a data set D = {(x,h)i : 1 ≤
i ≤ N}, sampled from the Deep Boltzmann Machine described in Theorem 3.
Running the Chow-Liu structure estimation algorithm [5] on D, and dropping
all edges with uniform edge marginals and disconnected vertices reveals the DBT.

By construction, the Chow-Liu tree is the pairwise undirected model that
minimizes the Kullback-Leibler divergence to the actual joint pmf that generated
the data. While we assume that the data was generated by a Boltzmann machine,
we know that there is a Boltzmann tree which represents the exact same pmf.
Thus, the Chow-Liu tree must be the DBT given N is large enough.

Corollary 2 (l1-regularized DBM). Consider a data set D = {(x,h)i : 1 ≤
i ≤ N}, sampled from the Deep Boltzmann Machine described in Theorem 3.
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Algorithm 2: Learning the Deep Boltzmann Tree Weights

Require: Data set D = {x1, . . . ,xN}, DBT T = (V,E) from Alg. 1
1: Initialize θ ← 0
2: ∀ hidden unit u: initialize Xu ← ∅
3: for training data xi ∈ D do
4: y ← empty state ()
5: for hidden unit u ∈ V do
6: for vertex v ∈ V (u) do
7: y ← y ◦ xi

v

8: end for
9: if y 6∈ Xu then

10: Xu ← Xu ∪ {y}
11: end if
12: h(xi)u ← y
13: end for
14: end for
15: while ‖∇(θ)‖ > 0 do
16: θ ← θ − 1

2|E|∇`(θ)
17: end while
18: return θ // Optimal weights

Running the Elem-GM structure estimation algorithm [27] on D and dropping
all fully disconnected vertices reveals the DBT.

The so called elementary estimator for graphical models (Elem-GM) is a reg-
ularization based structure learning technique. In contrast to the Chow-Liu tree,
Elem-GM can output non-tree structures. The method performs l1-regularization
to identify unnecessary edges which are then excluded from the learned model.
Since we know that many edges are actually unnecessary to recover the full joint
pmf, we conclude that the DBT is an optimal solution to the Elem-GM problem
given N is large enough.

3.1 Learning the DBT Weights

So far, we only discussed how to find the DBT. We will now explain how to
estimate the DBT weights from data. Learning the parameters of a DBT fac-
torizes into two phases: in the first phase, we have to find good initial values for
the hidden units h—this choice is crucial and failing to find good values implies
inferior learning results. Moreover, phase one determines the state space Xu of
each hidden units u. In phase two, numerical first-order optimization is applied
to find a minimizer of `. The problem in phase two is convex given any fixed
hidden values from phase one. The learning procedure is provided in Alg. 2. Let
us quickly go through it line-by-line. First, we initialize the weight vector and the
hidden state spaces (lines 1 and 2). We then loop over all N training instances xi

(line 3). We initialize a new empty state (line 4) and recall from Theorem 2 that
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each hidden unit u originates from a clique or separator vertex of the junction
tree. Denote the set of visible units connected to the original clique or separator
vertex by V (u). In lines 6-8 we read the states of all visible units in V (u) and
construct a new hidden state y. If that hidden state was never seen before (line
9), we create a new state in u’s state space (line 10), and assign that new state
to the hidden activation h(xi)u that is associated with the current data point
xi (line 12). Lines 15 to 17 correspond to gradient descent.

Notice that we stop the optimization when the gradient’s norm is zero. Since
the objective function is convex, we will surely arrive at a global minimizer of `
given our learning rate is correct. Notice further that we set the learning rate to
1/(2|E|). This originates from the fact that gradient descent with learning rate
1/L is guaranteed to converge to the next local minimum (which is also global
due to convexity). Here L denotes the gradients Lipschitz constant. As we could
not find the following result in the literature, we state it for completeness. A
proof is provided in the supplementary material.

Lemma 1 (Lipschitz Continuous Gradient). The gradient of any tree-struc-
tured, undirected model is Lipschitz continuous with constant L = 2|E|.

For simplicity, we state Alg. 2 as plain gradient descent method. In our
experiments however, we use Nesterov-acceleration [17] to speed-up learning.
More on gradient computation for exponential families can be found in [24].

The proposed algorithm grows the hidden state space to cover joint realiza-
tions of the underlying chordal model. Note, however, that only clique states
that actually appear in the data set are generated. This is in in contrast to the
junction tree algorithm, whose runtime is always exponential in the size of the
largest clique. However, if one cannot effort to grow the hidden state space as
large as the data tells us, i.e., due to limited resources, we can assign some al-
ready known state. In that case, we suggest to iterate phase two and use the
estimated model weights θ to re-sample the hidden activation. Thus, performing
an expectation-maximization procedure [6].

4 Experiments

We conduct a small set of experiments to provide a proof of concept of the gen-
erative capabilities of Deep Boltzmann Trees. The source code, and a docker
image that contains everything which is required to repeat our experiments, are
available for download (http://www.randomfields.org/dbt). To facilitate repro-
ducability, we employ the following freely available benchmark data sets:

– MNIST (http://yann.lecun.com/exdb/mnist)
– Fashion-MNIST (https://github.com/zalandoresearch/fashion-mnist)
– Caltech101 Silhouette (https://people.cs.umass.edu/m̃arlin/data.shtml)

Numeric attributes (MNIST and Fashion-MNIST) are discretized via quantiles
to contain at most 10 distinct states. The Caltech101 data contains various
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Caltech101 Silhouette

Class 0
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Data set Mean Obj.

MNIST 97.808

Fashion-MNIST 675.56

Caltech101 Silh. 98.177

Fig. 5. The training progress and mean neg. avg. log-likelihood of DBT learning on all
benchmark data sets.

classes with very few data points (< 100). Thus, we took only the ten classes
with most training instances. For each data set, we join the predefined training
data and test data, and run Algorithms 1 and 2 until convergence to estimate the
DBTs and their weights. Recall that Algorithm 1 requires a graphical structure
as input. We run Chordalysis [26] to compute chordal conditional independence
structures. Chordalysis allows to control the false discovery rate to get rid of
spurious dependencies, which we set2 to 0.05. The training progress and final
mean objective function values are provided in Fig. 5. The plots show how the
conditional likelihood of each class evolves during training. We see that the model
achieves much lower neg. log-likelihoods on MNIST and Caltech101 than on
Fashion-MNIST. Since the DBT itself is a universal estimator, we conclude that
Fashion-MNIST does not contain enough data to allow a reliable estimation of
the underlying conditional independence structure. Having a reasonable estimate
of that structure is crucial for the DBT construction.

After learning, we perform Perturb-and-MAP sampling [19] to generate sam-
ples from the models. Due to large likelihood values, we expect that samples from
the Fashion-MNIST model have rather low quality. Some resulting samples are
shown in Figures 6 and 7. We see that the model produces crisp MNIST samples

2 We have to stress that this is not a hyper-parameter of the DBT. Moreover, 0.05 is
not “tuned” either as it is the default value in Chordalysis.
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Fig. 6. Synthetic MNIST data (top) and synthetic Fashion-MNIST data (bottom),
sampled from the DBT.

without mode collapse, i.e., they are not just noisy versions of the same number.
Each class is able to generate multiple samples which look like different ways to
write the particular number. As expected, the quality of Fashion-MNIST sam-
ples is rather low. The type of class, like pants, bag, shirt, shoe, or dress can be
identified in most cases, but the resulting samples are close to mode collapse.
The diversity of Caltech101 Silhouette samples is also low. However, this is al-
ready true for the original silhouette data. Of course, the model can only learn
to generate diverse samples if the underlying data contains some diversity.

5 Conclusion

State-of-the-art results in various classification and synthetic data generation
tasks are often achieved by deep learning. While the field of deep learning evolves
fast, theoretical insights are rare. Moreover, many hyper-parameters have to be
tuned in order to reach actual state-of-the-art performance. Driven by the wish
for a better understanding of how depth improves a model, we studied the struc-
ture of DBMs. We discovered a new deep generative model, the Deep Boltzmann
Tree, which can be learned from data without tuning a single hyper-parameter.
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Fig. 7. Synthetic Caltech101 Silhouette data, sampled from the Deep Boltzmann Tree.

We proved that DBTs are universal approximators and showed connections to
other structure learning methods. Experiments on benchmark data suggest, that
high-quality synthetic data can be generated if the data set is large enough to
allow for a reasonable estimation of the underlying conditional independence
structure. Due to its tree structure, the DBT does not suffer from computational
issues like the Deep Boltzmann Machine does. As a by-product, we discovered
the best known bound on the depth of categorical DBMs and proposed a con-
jecture on why depth can improve a model in practice. Our results pave the way
for several new research directions, including likelihood-based hybrid classifica-
tion/generation models, and the consistent estimation of high-resolution image
and audio data with theoretical guarantees.
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