
Fast likelihood-based change point detection

Nikolaj Tatti[0000−0002−2087−5360] (�)

HIIT, University of Helsinki, Helsinki, Finland
nikolaj.tatti@helsinki.fi

Abstract. Change point detection plays a fundamental role in many
real-world applications, where the goal is to analyze and monitor the
behaviour of a data stream. In this paper, we study change detection in
binary streams. To this end, we use a likelihood ratio between two models
as a measure for indicating change. The first model is a single bernoulli
variable while the second model divides the stored data in two segments,
and models each segment with its own bernoulli variable. Finding the
optimal split can be done in O(n) time, where n is the number of entries
since the last change point. This is too expensive for large n. To combat
this we propose an approximation scheme that yields (1− ε) approxima-
tion in O

(
ε−1 log2 n

)
time. The speed-up consists of several steps: First

we reduce the number of possible candidates by adopting a known re-
sult from segmentation problems. We then show that for fixed bernoulli
parameters we can find the optimal change point in logarithmic time.
Finally, we show how to construct a candidate list of size O

(
ε−1 logn

)
for model parameters. We demonstrate empirically the approximation
quality and the running time of our algorithm, showing that we can gain
a significant speed-up with a minimal average loss in optimality.

1 Introduction

Many real-world applications involve in monitoring and analyzing a constant
stream of data. A fundamental task in such applications is to monitor whether a
change has occurred. For example, the goal may be monitoring the performance
of a classifier over time, and triggering retraining if the quality degrades too
much. We can also use change point detection techniques to detect anomalous
behavior in the data stream. As the data flow may be significant, it is important
to develop efficient algorithms.

In this paper we study detecting change in a stream of binary numbers, that
is, we are interested in detecting whether the underlying distribution has recently
changed significantly. To test the change we will use a standard likelihood ratio
statistic. Namely, assume that we have already observed n samples from the
last time we have observed change. In our first model, we fit a single bernoulli
variable to these samples. In our second model, we split these samples in two
halves, say at point i, and fit two bernoulli variables to these halves. Once this is
done we compare the likelihood ratio of the models. If the ratio is large enough,
then we deem that change has occurred.

2 N. Tatti

In our setting, index i is not fixed. Instead we are looking for the index
that yields the largest likelihood. This can be done naively in O(n) time by
testing each candidate. This may be too slow, especially if n is large enough and
we do not have the resources before a new sample arrives. Our main technical
contribution is to show how we can achieve (1 − ε) approximate of the optimal
i in O

(
ε−1 log2 n

)
time.

To achieve this we will first reduce the number of candidates for the optimal
index i. We say that index j is a border if each interval ending at j − 1 has a
smaller proportion of 1s that any interval that starts at j. A known result states
that the optimal change point will be among border indices. Using border indices
already reduces the search time greatly in practice, with theoretical running time
being O

(
n2/3

)
.

To obtain even smaller bounds we show that we can find the optimal index
among the border indices for fixed model parameters, that is, the parameters
for the two bernoulli variables, in O(log n) time. We then construct a list of
O
(
ε−1 log n

)
candidates for these parameters. Moreover, this list will contain

model parameters that are close enough to the optimal parameters, so testing
them yields (1− ε) approximation guarantee in O

(
ε−1 log2 n

)
time.

The remaining paper is organized as follows. In Section 2 we introduce prelim-
inary notation and define the problem. In Section 3 we introduce border points.
We present our main technical contribution in Sections 4–5: first we show how to
find optimal index for fixed model parameters, and then show how to select can-
didates for these parameters. We present related work in Section 6 and empirical
evaluation in Section 7. Finally, we conclude with discussion in Section 8.

2 Preliminaries and problem definition

Assume a sequence of n binary numbers S = s1, . . . , sn. Here s1 is either the
beginning of the stream or the last time we detected a change. Our goal is to
determine whether a change has happened in S. More specifically, we consider
two statistical models: The first model M1 assumes that S is generated with a
single bernoulli variable. The second model M2 assumes that there is an index
i, a change point, such that s1, . . . , si−1 is generated by one bernoulli variable
and si, . . . , sn is generated by another bernoulli variable.

Given a sequence S we will fit M1 and M2 and compare the log-likelihoods.
Note that the model M2 depends on the change point i, so we need to select i
that maximizes the likelihood of M2. If the ratio is large enough, then we can
determine that change has occurred.

To make the above discussion more formal, let us introduce some notation.
Given two integers a and b, and real number between 0 and 1, we denote the
log-likelihood of a bernoulli variable by

`(a, b; p) = a log p+ b log(1− p) .

For a fixed a and b, the log-likelihood is at its maximum if p = a/(a+ b). In such
a case, we will often drop p from the notation and simply write `(a, b).

Fast likelihood-based change point detection 3

We have the following optimization problem.

Problem 1 (Change). Given a sequence S = s1, . . . , sn, find an index i s.t.

`(a1, b1) + `(a2, b2)− `(a, b)

is maximized, where

a1 =

i−1∑
j=1

si, b1 = i− 1− a1, a2 =

k∑
j=i

si, b2 = k − i− a2,

a = a1 + a2, and b = b1 + b2 .

Note that Change can be solved in O(n) time by simply iterating over all
possible values for i. Such running time may be too slow, especially in a streaming
setting when new points arrive constantly, and our goal is to determine whether
change has occurred in real time. The main contribution of this paper is to
show how to compute (1 − ε) estimate of Change in O

(
ε−1 log2 n

)
time. This

algorithm requires additional data structures that we will review in the next
section. As our main application is to search change points in a stream, these
structures need to be maintained over a stream. Luckily, there is an amortized
constant-time algorithm for maintaining the needed structure, as demonstrated
in the next section.

Once we have solved Change, we compare the obtained score against the
threshold σ. Note that M2 will always have a larger likelihood than M1. In this
paper, we will use BIC to adjust for the additional model complexity of M2.
The model M2 has three parameters while the model M1 has 1 parameter. This
leads to a BIC penalty of (3−1)/2 log n = log n. In practice, we need to be more
conservative when selecting M2 due to the multiple hypothesis testing problem.
Hence, we will use σ = τ+log n as the threshold. Here, τ is a user parameter; we
will provide some guidelines in selecting τ during the experimental evaluation in
Section 7.

When change occurs at point i we have two options: we can either discard the
current window and start from scratch, or we can drop only the first i elements.
In this paper we will use the former approach since the latter approach requires
additional maintenance which may impact overall computational complexity.

3 Reducing number of candidates

Our first step for a faster change point discovery is to reduce the number of
possible change points. To this end, we define a variant of Change, where we
require that the second parameter in M2 is larger than the first.

Problem 2 (ChangeInc). Given a sequence S = s1, . . . , sn, find an index i s.t.

`(a1, b1) + `(a2, b2)− `(a, b)

4 N. Tatti

is maximized, where

a1 =

i−1∑
j=1

si, b1 = i− 1− a1, a2 =

k∑
j=i

si, b2 = k − i− a2,

a = a1 + a2, and b = b1 + b2

with a1/(a1 + b1) ≤ a2/(a2 + b2).

From now on, we will focus on solving ChangeInc. This problem is mean-
ingful by itself, for example, if the goal is to detect a deterioration in a classi-
fier, that is, sudden increase in entries being equal to 1. However, we can also
use ChangeInc to solve Change. This is done by defining a flipped sequence
S′ = s′1, . . . , s

′
n, where s′i = 1 − si. Then the solution for Change is either the

solution of ChangeInc(S) or the solution of ChangeInc(S′).
Next we show that we can limit ourselves to border indices when solving

ChangeInc.

Definition 1. Assume a sequence of binary numbers S = (si)
n
i=1. We say that

index j is a border index if there are no indices x, y with x < j < y such that

1

j − x

j−1∑
i=x

si ≥
1

y − j

y−1∑
i=j

si .

In other words, j is a border index if and only if the average of any interval
ending at j − 1 is smaller than the average of any interval starting at j.

Proposition 1. There is a border index i that solves ChangeInc.

The proposition follows from a variant of Theorem 1 in [19]. For the sake of
completeness we provide a direct proof in Appendix in supplementary material.

We address the issue of maintaining border indices at the end of this section.
The proposition permits us to ignore all indices that are not borders. That

is, we can group the sequence entries in blocks, each block starting with a border
index. We can then search for i using these blocks instead of using the original
sequence.

It is easy to see that these blocks have the following property: the proportion
of 1s in the next block is always larger. This key feature will play a crucial role in
the next two sections as it allows us to use binary search techniques and reduce
the computational complexity. Let us restate the original problem so that we
can use this feature. First, let us define what is a block sequence.

Definition 2. Let B = 〈(ui, vi)〉ki=1 be a sequence of k pairs of non-negative
integers with ui + vi > 0. We say that B is block sequence if ui+1

ui+1+vi+1
> ui

ui+vi
.

We obtain a block sequence B from a binary sequence S by grouping the
entries between border points: the counter ui indicates the number of 1s while
the counter vi indicates the number of 0s.

Our goal is to use block sequences to solve ChangeInc. First, we need some
additional notation.

Fast likelihood-based change point detection 5

Definition 3. Given a block sequence B, we define B[i; j] = (a, b), where a =∑j
k=i uk and b =

∑j
k=i vk. If i > j, then a = b = 0. Moreover, we will write

av(i, j;B) =
a

a+ b
.

If B is known from the context, we will write av(i, j).

Definition 4. Given a block sequence B, we define the score of a change point
i to be

q(i;B) = `(a1, b1) + `(a2, b2)− `(a, b) , (1)

where (a1, b1) = B[1; i− 1], (a2, b2) = B[i; k], and a = a1 + a2 and b = b1 + b2.

Note that `(a, b) is a constant but it is useful to keep since q(i;B) is a log-
likelihood ratio between two models, and this formulation allows us to estimate
the objective in Section 5.

Problem 3 (ChangeBlock). Given a block sequence B find a change point i
that maximizes q(i;B).

We can solve ChangeInc by maintaining a block sequence induced by the
border points, and solving ChangeBlock. Naively, we can simply compute
q(i;B) for each index in O(|B|) time. If the distribution is static, then |B| will
be small in practice. However, if there is a concept drift, that is, there are more 1s
in the sequence towards the end of sequence, then |B| may increase significantly.
Calders et al. [8] argued that when dealing with binary sequences of length n,
the number of blocks |B| ∈ O

(
n2/3

)
. In the following two sections we will show

how to solve ChangeBlock faster.
However, we also need to maintain the block sequence as new entries arrive.

Luckily, there is an efficient update algorithm, see [8] for example. Assume that
we have already observed n entries, and we have a block sequence of k blocks
B induced by the border points. Assume a new entry sn+1. We add (k + 1)th
block (uk+1, vk+1) to B, where uk+1 = [sn+1 = 1] and vk+1 = [sn+1 = 0]. We
then check whether av(k + 1, k + 1) ≤ av(k, k), that is, whether the average of
the last block is smaller than or equal to the average of the second last block.
If it is, then we merge the blocks and repeat the test. This algorithm maintains
the border points correctly and runs in amortized O(1) time.

It is worth mentioning that the border indices are also connected to isotonic
regression (see [16], for example). Namely, if one would fit isotonic regression
to the sequence S, then the border points are the points where the fitted curve
changes its value. In fact, the update algorithm corresponds to the pool adjacent
violators (PAVA) algorithm, a method used to solve isotonic regression [16].

4 Finding optimal change point for fixed parameters

In this section we show that if the model parameters are known and fixed, then
we can find the optimal change point in logarithmic time.

First, let us extend the definition of q(·) to handle fixed parameters.

6 N. Tatti

Definition 5. Given a block sequence B, an index i, and two parameters p1 and
p2, we define

q(i; p1, p2, B) = `(a1, b1; p1) + `(a2, b2; p2)− `(a, b) ,

where (a1, b1) = B[1; i− 1], (a2, b2) = B[i; k], and a = a1 + a2 and b = b1 + b2.

We can now define the optimization problem for fixed parameters.

Problem 4. Given a block sequence B, two parameters 0 ≤ p1 < p2 ≤ 1, find i
maximizing q(i; p1, p2, B).

Let i∗ be the solution for Problem 4. It turns out that we can construct a
sequence of numbers, referred as dj below, such that dj > 0 if and only if j < i∗.
This allows us to use binary search to find i∗.

Proposition 2. Assume a block sequence B = 〈(uj , vj)〉 and two parameters
0 ≤ p1 < p2 ≤ 1. Define

dj = `(uj , vj , p1)− `(uj , vj , p2) .

Then there is an index i such that dj > 0 if and only if j < i. Moreover, index
i solves Problem 4.

Proof. Let us first show the existence of i. Let tj = uj + vj , and write X =
log p1 − log p2 and Y = log(1− p1)− log(1− p2). Then

dj
tj

=
uj
tj
X +

vj
tj
Y =

uj
tj
X + Y − uj

tj
Y =

uj
tj

(X − Y) + Y .

Since B is a block sequence, the fraction uj/tj is increasing. Since X < 0 and
Y > 0, we have X − Y < 0, so dj/tj is decreasing. Since dj and dj/tj have the
same sign, there is an index i satisfying the condition of the statement.

To prove the optimality of i, first note that

dj = q(j + 1; p1, p2, B)− q(j; p1, p2, B) .

Let i∗ be a solution for Problem 4. If i < i∗. Then

q(i∗; p1, p2, B)− q(i; p1, p2, B) =

i∗−1∑
j=i

dj ≤ 0,

proving the optimality of i. The case for i > i∗ is similar. ut

Proposition 2 implies that we can use binary search to solve Problem 4 in
O(log |B|) ∈ O(log n) time. We refer to this algorithm as FindSegment(p1, p2, B).

Fast likelihood-based change point detection 7

5 Selecting model parameters

We have shown that if we know the optimal p1 and p2, then we can use binary
search as described in the previous section to find the change point. Our main
idea is to test several candidates for p1 and p2 such that one of the candidates
will be close to the optimal parameters yielding an approximation guarantee.

Assume that we are given a block sequence B and select a change point i.
Let (a1, b1) = B[1; i−1], (a2, b2) = B[i; k], a = a1+a2, b = b1+b2 be the counts.
We can rewrite objective given in Eq. 1 as

q(i;B) = `(a1, b1) + `(a2, b2)− `(a, b)
= (`(a1, b1, p1)− `(a1, b1, q)) + (`(a2, b2, p2)− `(a2, b2, q)) ,

(2)

where the model parameters are p1 = a1/(a1 + b1), p2 = a2/(a2 + b2), and
q = a/(a+ b).

The score as written in Eq. 2 is split in two parts, the first part depends on p1
and the second part depends on p2. We will first focus solely on estimating the
second part. First, let us show how much we can vary p2 while still maintaining
a good log-likelihood ratio.

Proposition 3. Assume a, b > 0, and let p = a/(a + b). Assume 0 < q ≤ p.
Assume also ε > 0. Define h(x) = `(a, b;x)− `(a, b; q). Assume r such that

log q + (1− ε)(log p− log q) ≤ log r ≤ log p . (3)

Then h(r) ≥ (1− ε)h(p).

Proof. Define f(u) = h(expu). We claim that f is concave. To prove the claim,
note that the derivative of f is equal to

f ′(u) = a− b expu

1− expu
.

Hence, f ′ is decreasing for u < 0, which proves the concavity of f .
Define c = log r−log q

log p−log q . Eq. 3 implies that 1− ε ≤ c. The concavity of f(u) and

the fact that h(q) = 0 imply that

h(r) = f(log r) ≥ f(log q) + c [f(log p)− f(log q)] = ch(p) ≥ (1− ε)h(p),

which proves the proposition. ut

We can use the proposition in the following manner. Assume a block sequence
B with k entries. Let i∗ be the optimal change point and p∗1 and p∗2 be the
corresponding optimal parameters. First, let

P = {av(i, k) | i = 1, . . . , k}

be the set of candidate model parameters. We know that the optimal model
parameter p∗2 ∈ P . Instead of testing every p ∈ P , we will construct an index

8 N. Tatti

set C, and define R = {av(i, k) | i ∈ C}, such that for each p ∈ P there is r ∈ R
such that Eq. 3 holds. Proposition 3 states that testing the parameters in R
yields a (1− ε) approximation of the second part of the right-hand side in Eq. 2.

We wish to keep the set C small, so to generate C, we will start with i = 1
and set C = {i}. We then look how many values of P we can estimate with
av(i, k), that is, we look for the smallest index for which Eq. 3 does not hold.
We set this index to i, add it to C, and repeat the process. We will refer to
this procedure as FindCands(B, ε). The detailed pseudo-code for FindCands
is given in Algorithm 1.

Algorithm 1: FindCands(B, ε), given a block sequence B of k entries
and an estimation requirement ε > 0, constructs a candidate index set
C that is used to estimate the model parameter p2.

1 C ← {1}; i← 1; q ← av(1, k);
2 while i < k do
3 ρ← (log av(i, k)− log q)/(1− ε);
4 i← smallest index j s.t. log av(j, k)− log q > ρ, or k if j does not exist;
5 add i to C;

6 return C;

Proposition 4. Assume a block sequence B with k entries, and let ε > 0.
Set P = {av(i, k) | i = 1, . . . , k}. Let C = FindCands(B, ε), and let R =
{av(i, k) | i ∈ C}. Then for each p ∈ P there is r ∈ R such that Eq. 3 holds.

Proof. Let p ∈ P \R. This is only possible if there is a smaller value r ∈ R such
that (1− ε)(log p− log q) < log r − log q holds. ut

Finding the next index i in FindCands can be done with a binary search
in O(log |B|) time. Thus, FindCands runs in O(|C| log n) time. Next result
shows that |C| ∈ O

(
ε−1 log n

)
, which brings the computational complexity of

FindCands to O
(
ε−1 log2 n

)
.

Proposition 5. Assume a block sequence B with k entries generated from a
binary sequence S with n entries, and let ε > 0. Let P = {av(i, k) | i = 1, . . . , k}.
Assume an increasing sequence R = (ri) ⊆ P . Let q = av(1, k). If

log q + (1− ε)(log ri − log q) > log ri−1, (4)

then |R| ∈ O
(

logn
ε

)
.

Proof. We can rewrite Eq. 4 as (1 − ε)(log ri − log q) > log ri−1 − log q which
automatically implies that

(1− ε)i(log ri+2 − log q) > log r2 − log q .

Fast likelihood-based change point detection 9

To lower-bound the right-hand side, let us write r2 = x/y and q = u/v, where
x, y, u, and v are integers with y, v ≤ n. Note that r2 > q, otherwise we violate
Eq. 4 when i = 2. Hence, we have xv ≥ uy + 1. Then

log r2 − log q = log xv − log uy ≥ log(uy + 1)− log uy = log(1 +
1

uy
)

≥ log(1 +
1

n2
) ≥ n−2

1 + n−2
=

1

1 + n2
.

We can also upper-bound the left-hand side with

log ri+2 − log q ≤ log 1− log u/v = log v/u ≤ log n .

Combining the three previous inequalities leads to

log n ≥ log ri+2 − log q >
log r2 − log q

(1− ε)i
≥ 1

(1− ε)i
1

1 + n2
.

Solving for i,

i ≤ log(1 + n2) + log log n

log 1
1−ε

≤ log(1 + n2) + log log n

ε
∈ O

(
log n

ε

)
,

completes the proof. ut

We can now approximate p∗2. Our next step is to show how to find similar
value for p∗1. Note that we cannot use the previous results immediately because
we assumed that p ≥ q in Proposition 3. However, we can fix this by simply
switching the labels in S.

Proposition 6. Assume a, b > 0, and let p = a/(a+ b). Assume q with 0 < p ≤
q. Assume also ε > 0. Define h(x) = `(a, b;x)− `(a, b; q). Assume r such that

log(1− q) + (1− ε)(log(1− p)− log(1− q)) ≤ log(1− r) ≤ log(1− p) . (5)

Then h(r) ≥ (1− ε)h(p).

Proof. Set a′ = b, b′ = a, q′ = 1 − q, and r′ = 1 − r. The proposition follows
immediately from Proposition 3 when applied to these variables. ut

Proposition 6 leads to an algorithm, similar to FindCands, for generating
candidates for p∗1. We refer to this algorithm as FindCands′, see Algorithm 2.

Assume that we have computed two sets of candidate indices C1 and C2;
the first set is meant to be used to estimate p∗1, while the second set is meant
to be used to estimate p∗2. The final step is to determine what combinations of
parameters should we check. A naive approach would be to test every possible
combination. This leads to O(|C1||C2|) tests.

However, since p∗1 and p∗2 are induced by the same change point i∗, we can
design a more efficient approach that leads to only O(|C1|+ |C2|) tests. In or-
der to do so, first we combine both candidate sets, C = C1 ∪ C2. For each

10 N. Tatti

Algorithm 2: FindCands′(B, ε), given a block sequence B of k entries
and an estimation requirement ε > 0, constructs a candidate index set
C that is used to estimate the model parameter p1.

1 C ← {k}; i← k; q ← av(1, k);
2 while i > 1 do
3 ρ← (log(1− av(1, i− 1))− log(1− q))/(1− ε);
4 i← largest index j s.t. log(1− av(1, j − 1))− log(1− q) > ρ, or 1 if j does

not exist;
5 add i to C;

6 return C;

index ci ∈ C, we compute the score q(ci;B). Also, if there are blocks be-
tween ci−1 and ci that are not included in C, that is, ci−1 + 1 < ci, we set
p1 = av(1, ci − 1) and p2 = av(ci−1, k), compute the optimal change point
j = FindSegment(p1, p2, B), and test q(j, B). When all tests are done, we
return the index that yielded the best score. We refer to this algorithm as
FindChange(B, ε), and present the pseudo-code in Algorithm 3.

Proposition 7. FindChange(B, ε) yields (1− ε) approximation guarantee.

Proof. Let i∗ be the optimal value with the corresponding parameters p∗1 and
p∗2. Let C1, C2 and C be the sets as defined in Algorithm 3. If i∗ ∈ C, then we
are done. Assume that i∗ /∈ C. Then there are cj−1 < i∗ < cj , since 1, k ∈ C.
Let r2 = av(cj−1, k). Then r2 and p∗2 satisfy Eq. 3 by definition of C2. Let
r1 = av(1, cj − 1). Then r1 and p∗1 satisfy Eq. 5 by definition of C1. Let i be the
optimal change point for r1 and r2, that is, i = FindSegment(r1, r2, B).

Propositions 3 and 6 together with Eq. 2 imply that

q(i;B) ≥ q(i; r1, r2, B) ≥ q(i∗; r1, r2, B) ≥ (1− ε)q(i∗;B) .

This completes the proof. ut

We complete this section with computational complexity analysis. The two
calls of FindCands require O

(
ε−1 log2 n

)
time. The list C has O

(
ε−1 log n

)
entries, and a single call of FindSegment for each c ∈ C requires O(log n)
time. Consequently, the running time for FindChange is O

(
ε−1 log2 n

)
.

6 Related work

Many techniques have been proposed for change detection in a stream setting.
We will highlight some of these techniques. For a fuller picture, we refer the
reader to a survey by Aminikhanghahi and Cook [2], and a book by Basseville
and Nikiforov [5].

A standard approach for change point detection is to split the stored data
in two segments, and compare the two segments; if the segments are different,

Fast likelihood-based change point detection 11

Algorithm 3: FindChange(B, ε), yields (1 − ε) approximation guar-
antee for ChangeBlock.

1 C2 ← FindCands(B, ε);
2 C1 ← FindCands′(B, ε);
3 C ← C1 ∪ C2;
4 foreach cj ∈ C do
5 test q(cj ;B);
6 if cj−1 + 1 < cj then
7 r1 ← av(1, cj − 1);
8 r2 ← av(cj−1, k);
9 i← FindSegment(r1, r2, B);

10 test q(i;B);

11 return index i∗ having the best score q(i;B) among the tested indices;

then a change has happened. Bifet and Gavalda [7] proposed an adaptive sliding
window approach: if the current window contains a split such that the averages
of the two portions are different enough, then the older portion is dropped from
the window. Nishida and Yamauchi [17] compared the accuracy of recent samples
against the overall accuracy using a statistical test. Kifer et al. [15] proposed a
family of distances between distributions and analyzed them in the context of
change point detection. Instead of modeling segments explicitly, Kawahara and
Sugiyama [14] proposed estimating density ratio directly. Dries and Rückert [9]
studied transformations a multivariate stream into a univariate stream to aid
change point detection. Harel et al. [13] detected change by comparing the loss
in a test segment against a similar loss in a permuted sequence.

Instead of explicitly modeling the change point, Ross et al. [18] used expo-
nential decay to compare the performance of recent samples against the overall
performance. Baena-Garcia et al. [4], Gama et al. [10] proposed a detecting
change by comparing current average and standard deviation against the small-
est observed average and standard deviation. Also avoiding an explicit split, a
Bayesian approach for modeling the time since last change point was proposed
by Adams and MacKay [1].

An offline version of change point detection is called segmentation. Here we
are given a sequence of entries and a budget k. The goal is divide a sequence into
k minimizing some cost function. If the global objective is a sum of individual
segment costs, then the problem can be solved with a classic dynamic program
approach [6] in O

(
n2k

)
time. As this may be too slow speed-up techniques

yielding approximation guarantees have been proposed [11, 20, 21]. If the cost
function is based on one-parameter log-linear models, it is possible to speed-up
the segmentation problem significantly in practice [19], even though the worst-
case running time remains O

(
n2k

)
. Guha and Shim [12] showed that if the

objective is the maximum of the individual segment costs, then we can compute
the exact solution using only O

(
k2 log2 n

)
evaluations of the individual segment

costs.

12 N. Tatti

7 Experimental evaluation

For our experiments, we focus on analyzing the effect of the approximation
guarantee ε, as well as the parameter τ .1 2 Here we will use synthetic sequences.
In addition, we present a small case study using network traffic data.

1 4 7 10

15

20

25

30

threshold τ

d
e
la
y
to

tr
u
e
ch

a
n
g
e

(a)

1 4 7 10

20

70

120

170

threshold τ

#
o
f
ch

a
n
g
e
p
o
in
ts

(b)

0 0.3 0.6 0.9
24

25

26

27

guarantee ε

d
e
la
y
to

tr
u
e
ch

a
n
g
e

(c)

Fig. 1. Change point detection statistics as a function of threshold parameter τ and
approximation guarantee ε Step data: (a) average delay for discovering a true change
point (ε = 0), (b) number of discovered change points (ε = 0), and (c) average delay
for discovering a true change point (τ = 6). Note that in Step there are 19 true change
points. For τ = 0.5, the algorithm had average delay of 1.42 to a true change point but
reported 46 366 change points (these values are omitted due to scaling issues).

Synthetic sequences: We generated 3 synthetic sequences, each of length
200 000. For simplicity we will write Bern(p) to mean a bernoulli random variable
with probability of 1 being p. The first sequence, named Ind, consists of 200 000
samples from Bern(1/2), that is, fair coin flips. The second sequence, named
Step, consists of 10 000 samples from Bern(1/4) followed by 10 000 samples from
Bern(3/4), repeated 10 times. The third sequence, named Slope, includes 10 seg-
ments, each segment consists of 10 000 samples from Bern(p), where p increases
linearly from 1/4 to 3/4, followed by 10 000 samples from Bern(p), where p de-
creases linearly from 3/4 to 1/4. In addition, we generated 10 sequences, collec-
tively named Hill. The length of the sequences varies from 100 000 to 1 000 000
with increments of 100 000. Each sequence consists of samples from Bern(p),
where p increases linearly from 1/4 to 3/4.

Results: We start by studying the effect of the threshold parameter τ . Here,
we used Step sequence; this sequence has 19 true change points. In Figure 1a,
we show the average delay of discovering the true change point, that is, how
many entries are needed, on average, before a change is discovered after each
true change. In Figure 1b, we also show how many change points we discovered:
ideally we should find only 19 points. In both experiments we set ε = 0. We
see from the results that the delay grows linearly with τ , whereas the number

1 Recall that we say that change occurs if it is larger than σ = τ + logn.
2 The implementation is available at https://version.helsinki.fi/dacs/.

Fast likelihood-based change point detection 13

of false change points is significant for small values of τ but drop quickly as τ
grows. For τ = 6 we detected the ideal 19 change points. We will use this value
for the rest of the experiments.

0 0.3 0.6 0.9

0.2

0.4

0.6

0.8

1

guarantee ε

m
in

a
p
p
ro
x
.
ra

ti
o

(a)

0 0.3 0.6 0.9
0.97

0.98

0.99

1

guarantee ε
a
v
g
a
p
p
ro
x
.
ra

ti
o

(b)

Ind

Step

Slope

0 0.3 0.6 0.9
0

2

4

6
×10−3

guarantee ε

|C
|/
n

(c)

0 0.3 0.6 0.9

0.4

0.6

0.8

guarantee ε

|C
|/
k

(d)

0 0.3 0.6 0.9
20

30

40

50

guarantee ε
ru

n
n
in
g
ti
m
e
(s
)

(e)

Fig. 2. Performance metrics as a function of approximation guarantee ε on synthetic
data. Y-axes are as follows: (a) minimum of ratio FindChange(B, ε)/OPT , (b) average
of ratio FindChange(B, ε)/OPT , (c) number of candidates tested / window size (note
that y-axis is scaled), (d) number of candidates tested / number of blocks, and (e)
running time in seconds.

Our next step is to study the quality of the results as a function of ε on
synthetic data. Here we measure the ratio of the scores g = FindChange(B, ε)
and OPT = FindChange(B, 1), that is, the score of the solution to Change.
Note we include all tests, not just the ones that resulted in declaring a change.
Figure 2a shows the smallest ratio that we encountered as a function of ε, and
Figure 2b shows the average ratio as a function of ε. We see in Figure 2a that the
worst case behaves linearly as a function of ε. As guaranteed by Proposition 7, the
worst case ratio stays above (1−ε). While the worst-case is relatively close to its
theoretical boundary, the average case, shown in Figure 2b, performs significantly
better with average ratio being above 0.97 even for ε = 0.9. The effect of ε on
the actual change point detection is demonstrated in Figure 1c. Since, we may
miss the optimal value, the detector becomes more conservative, which increases
the delay for discovering true change. However, the increase is moderate (only
about 10%) even for ε = 0.9.

Our next step is to study speed-up in running time. Figure 2c shows the
number of tests performed compared to n, the number of entries from the last

14 N. Tatti

change point as a function of ε. We see from the results that there is significant
speed-up when compared to the naiveO(n) approach; the number of needed tests
is reduced by 2–3 orders of magnitude. The main reason for this reduction is due
to the border points. Reduction due to using FindCands is shown in Figure 2d.
Here we see that the number of candidates reduces linearly as a function of ε,
reducing the number of candidates roughly by 1/2 for the larger values of ε.
The running times (in seconds) are given in Figure 2e. As expected, the running
times are decreasing as a function of ε.

1 4 7 10
0

6

12

18

ε = .9

ε = .5

ε =
.1ε

=
0

sequence length (in 105)

ru
n
n
in
g
ti
m
e
(m

)

(a)

1 4 7 10
0

0.2

0.4

0.6

0.8

ε = .9

ε = .5

ε = .1

sequence length (in 105)

ti
m
e
/
ti
m
e
,
ε
=

0

(b)

1 4 7 10
0

0.2

0.4

0.6

ε = .9

ε =
.5

ε =
.1

sequence length (in 105)

|C
|/
k

(c)

Fig. 3. Computational metrics as a function of sequence length for Hill sequences: (a)
running time in minutes, (b) running time / running time for ε = 0, and (c) number
of candidates tested / number of blocks. Note that ε = 0 is equivalent of testing every
border index.

While the main reason for speed-up comes from using border indices, there
are scenarios where using FindCands becomes significant. This happens when
the number of border indices increases. We illustrate this effect with Hill se-
quences, shown in Figure 3. Here, for the sake of illustration, we increased the
threshold τ for change point detection so that at no point we detect change.
Having many entries with slowly increasing probability of 1 yields many border
points, which is seen as a fast increase in running time for ε = 0. Moreover, the
ratio of candidates tested by FindCands against the number of blocks, as well
as the running time, decreases as the sequence increases in size.

Use case with traffic data: We applied our change detection algorithm on
traffic data, network2, collected by Amit et al. [3]. This data contains observed
connections between many hosts over several weeks, grouped in 10 minute pe-
riods. We only used data collected during 24.12–29.12 as the surrounding time
periods contain a strong hourly artifact. We then transformed the collected data
into a binary sequence by setting 1 if the connection was related to SSL, and
0 otherwise. The sequence contains 282 754 entries grouped in 743 periods of
10 minutes. Our algorithm (ε = 0, τ = 6) found 12 change points, shown in
Figure 4. These patterns show short bursts of non-SSL connections. One excep-
tion is the change after the index 300, where the previously high SSL activity is
resolved to a normal behavior.

Fast likelihood-based change point detection 15

0 100 200 300 400 500 600 700
0.5

0.6

0.7

0.8

Fig. 4. Proportion of non-SSL connections in Network2 traffic data over time, in 10
minute periods. The bars indicate the change points: the end of the bar indicates when
change was discovered and the beginning of the bar indicate the optimal split.

8 Conclusions

In this paper we presented a change point detection approach for binary streams
based on finding a split in a current window optimizing a likelihood ratio. Finding
the optimal split needs O(n) time, so in order for this approach to be practi-
cal, we introduced an approximation scheme that yields (1 − ε) approximation
in O

(
ε−1 log2 n

)
. The scheme is implemented by using border points, an idea

adopted from segmentation of log-linear models, and then further reducing the
candidates by ignoring indices that border similar blocks.

Most of the time the number of borders will be small, and the additional
pruning is only required when the number of borders start to increase. This
suggests that a hybrid approach is sensible: we will iterate over borders if there
are only few of them, and switch to approximation technique only when the
number of borders increase.

We should point that even though the running time is poly-logarithmic, the
space requirement is at worst O

(
n2/3

)
. This can be rectified by simply removing

older border points but such removal may lead to a suboptimal answer. An inter-
esting direction for a future work is to study how to reduce the space complexity
without sacrificing the approximation guarantee.

In this paper, we focused only on binary streams. Same concept has the
potential to work also on other type of data types, such as integers or real-
values. The bottleneck here is Proposition 5 as it relies on the fact that the
underlying stream is binary. We will leave adopting these results to other data
types as a future work.

References

[1] Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. Tech-
nical report, University of Cambridge, Cambridge, UK (2007)

[2] Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change
point detection. Knowledge and Information Systems 51(2), 339–367 (May
2017)

[3] Amit, I., Matherly, J., Hewlett, W., Xu, Z., Meshi, Y., Weinberger, Y.:
Machine learning in cyber-security — problems, challenges and data sets. In:
The AAAI-19 Workshop on Engineering Dependable and Secure Machine
Learning Systems (2019)

16 N. Tatti

[4] Baena-Garcia, M., Campo-Avila, J.D., Fidalgo, R., Bifet, A., Gavalda, R.,
Morales-Bueno, R.: Early drift detection method. In: In 4th Int. Workshop
on Knowledge Discovery from Data Streams (2006)

[5] Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes – Theory and
Application. Prentice-Hall (1993)

[6] Bellman, R.: On the approximation of curves by line segments using dy-
namic programming. Communications of the ACM 4(6), 284–284 (1961)

[7] Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive
windowing. In: In SIAM Int. Conf. on Data Mining. pp. 443–448 (2007)

[8] Calders, T., Dexters, N., Goethals, B.: Mining frequent items in a stream
using flexible windows. Intell. Data Anal. 12(3), 293–304 (2008)

[9] Dries, A., Rückert, U.: Adaptive concept drift detection. Stat. Anal. Data
Min. 2(5–6), 311–327 (2009)

[10] Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift de-
tection. In: In SBIA Brazilian Symposium on Artificial Intelligence. pp.
286–295 (2004)

[11] Guha, S., Koudas, N., Shim, K.: Approximation and streaming algorithms
for histogram construction problems. ACM Transactions of Database Sys-
tems 31(1), 396–438 (2006)

[12] Guha, S., Shim, K.: A note on linear time algorithms for maximum error
histograms. IEEE Transactions on Knowledge and Data Engineering 19(7),
993–997 (2007)

[13] Harel, M., Mannor, S., El-Yaniv, R., Crammer, K.: Concept drift detection
through resampling. In: Proc. of the 31st Int. Conf. on Machine Learning.
pp. 1009–1017. ICML (2014)

[14] Kawahara, Y., Sugiyama, M.: Sequential change-point detection based on
direct density-ratio estimation. Statistical Analysis and Data Mining 5,
114–127 (2012)

[15] Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In:
Proc. of the 13th Int. Conf. on Very Large Data Bases. pp. 180–191. VLDB
(2004)

[16] de Leeuw, J., Hornik, K., Mair, P.: Isotone optimization in r: Pool-adjacent-
violators algorithm (pava) and active set methods. Journal of Statistical
Software, Articles 32(5), 1–24 (2009)

[17] Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing.
In: Proc. of the 10th Int. Conf. on Discovery Science. pp. 264–269 (2007)

[18] Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially
weighted moving average charts for detecting concept drift. Pattern Recog-
nition Letters 33(2), 191–198 (2012)

[19] Tatti, N.: Fast sequence segmentation using log-linear models. Data mining
and knowledge discovery 27(3), 421–441 (2013)

[20] Tatti, N.: Strongly polynomial efficient approximation scheme for segmen-
tation. Inf. Process. Lett. 142, 1–8 (2019), https://doi.org/10.1016/j.
ipl.2018.09.007

[21] Terzi, E., Tsaparas, P.: Efficient algorithms for sequence segmentation. In:
Proceedings of the 6th SIAM International Conference on Data Mining
(SDM). pp. 316–327 (2006)

