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Abstract. Sharing knowledge between tasks is vital for efficient learn-
ing in a multi-task setting. However, most research so far has focused
on the easier case where knowledge transfer is not harmful, i.e., where
knowledge from one task cannot negatively impact the performance on
another task. In contrast, we present an approach to multi-task deep
reinforcement learning based on attention that does not require any a-
priori assumptions about the relationships between tasks. Our attention
network automatically groups task knowledge into sub-networks on a
state level granularity. It thereby achieves positive knowledge transfer
if possible, and avoids negative transfer in cases where tasks interfere.
We test our algorithm against two state-of-the-art multi-task/transfer
learning approaches and show comparable or superior performance while
requiring fewer network parameters.

1 Introduction

Humans are often excellent role models for machines. Unlike machines, humans
have been interacting with their environment since time immemorial, and this
extensive experience should not be ignored. So how are we humans learning, and
what can machines learn from us?

First, humans learn with a limited amount of training data, as we cannot
afford to first train for an unreasonably long time before becoming active. Also,
we usually do not require labeled training data, but instead rely on experience
gained from interactions with our world. This situation is well represented by the
reinforcement learning paradigm: We observe the environment and take actions
to hopefully maximize our cumulative reward. Second, humans learn many tasks
concurrently, not only because there is no time to learn all possible tasks sequen-
tially, but also because tasks are often similar in nature, and useful strategies can
be transferred between comparable tasks. This is a fundamental aspect of intel-
ligence known as multi-task learning. Third, our brain would be overwhelmed if
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it had to focus on all skills acquired over the span of our lives at every point in
time. Therefore, we focus our attention to a set of skills useful at the moment.
If we were not able to relate similar tasks and attend to skills based on extrinsic
or intrinsic cues, our brain would not be able to learn much. Recent advances
in neuroscience [17] also suggest that the attention mechanisms of humans are
themselves learned through reinforcement learning.

In this paper, we investigate the combination of these three paradigms, in
other words, we study attentive multi-task deep reinforcement learning. More
specifically, we employ the insight of human attention by developing a simple
yet effective architecture for model-free multi-task reinforcement learning. We
use a neural network based attention mechanism to focus on sub-networks de-
pending on the current state of the environment and the task to be solved. Most
recent work [29, 12, 15, 2] in the multi-task/transfer deep reinforcement learn-
ing setting capitalize on some shared property between tasks. In contrast, our
approach makes no assumptions about the similarity between tasks. Instead,
possible relations are automatically inferred during training.

An additional advantage of using an attention based architecture is that un-
related tasks can effectively be separated and learned in different sub-parts of the
architecture. We thereby automatically embrace the negative transfer problem
(the effect that training one task might actually harm performance on another
task) which most related approaches omit in their evaluation. We show that our
approach scales economically with an increasing number of tasks as the atten-
tion mechanism automatically learns to group related skills in the same part of
the architecture. We back our claims by comparing against two state of the art
algorithms [29, 26] on a large set of grid world tasks with different amounts of
transferable knowledge. We show that our method scales better in the number
of parameters per task, while achieving comparable or superior performance in
terms of steps to convergence. Especially, when the action spaces of the tasks
are not aligned we outperform [29, 26].1

2 Related Work

Transfer learning in classical reinforcement learning [28] is a well established re-
search area. Even though Lin [18] already used neural networks in combination
with reinforcement learning, a renewed interest in this combination came with
the recent success on Atari (DQN, [21]), followed by an increased interest in de-
veloping transfer learning techniques specific to deep learning. Parisotto et al. [22]
train a neural network to predict the features and outputs of several expert
DQNs and use multi-task network weights as initialization for a target task
DQN. Rusu et al. [25] use a single network to match expert DQN policies from
different games by policy distillation. Yin et al. [30] improve policy distillation
by making the convolutional layers task specific and by using hierarchical ex-
perience replay. Schmitt et al. [27] also build on the idea of policy distillation

1 To stimulate future research in this area, our source code is available at: https:

//github.com/braemt/attentive-multi-task-deep-reinforcement-learning.
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but additionally propose to anneal the teacher signal such that the student can
surpass the teacher’s performance. Further, in [11, 7, 23] knowledge is transferred
from human expert demonstrations, while the algorithm of Aytar et al. [1] learns
from YouTube video demonstrations. Gupta et al. [9] transfer knowledge from
source to target agent by training matched feature spaces. Closely related to
our approach is the work of Rajendran et al. [24] who also incorporate several
sub-networks and an attention mechanism to transfer knowledge from an ex-
pert network. In contrast to the architecture described in [24] and all related
work mentioned so far, our algorithm learns multiple tasks simultaneously from
scratch, without guidance from any demonstrations or experts. This makes our
approach self-sustained and as such more general than mentioned related work.

Glatt et al. [8] train a DQN on a source task and investigate how the learned
weights, which are used as initialization for a target task, alter the performance.
In a similar manner, [4, 6, 10] show that some transfer is possible by simply
training one network on multiple tasks. However, since these algorithms do not
incorporate any task-specific weights, the best that can be done is to interpolate
between conflicting tasks. In contrast, our method allows conflicting tasks to be
learned in separate networks.

One interesting line of research [15, 31, 3, 2, 16] capitalizes on transferring
knowledge based on successor features, i.e., shared environment dynamics. In
contrast, our method does not rely on shared environment dynamics nor action
alignment across tasks.

Czarnecki et al. [5] use multiple networks similar to our approach. However,
their focus is on automated curriculum learning. Therefore they adjust the policy
mixing weights through population based training [13] while we learn attention
weights conditioned on the task state.

Rusu et al. [26] introduce Progressive Neural Networks (PNN), an effective
approach for learning in a sequential multi-task setting. In PNN, a new network
and lateral connections for each additional task are added in order to enable
knowledge transfer, which speeds up the training of subsequent tasks. The addi-
tional network parts let the architecture grow super-linearly, while our network
scales economically with an increasing number of tasks. Another strong approach
is introduced by Teh et al. [29]. Their algorithm, Distral, learns multiple tasks at
once by sharing knowledge through a distillation process of an additional shared
policy network. In contrast to our approach, this requires an aligned action space
and a separate network for each task. We compare against Distral and PNN in
our experiments.

3 Background

In reinforcement learning, an agent learns through interactions with an environ-
ment. The agent repeatedly chooses an action at ∈ A at step t and observes
a reward rt ∈ R and the next state st+1 ∈ S, where A and S denote the sets
of possible actions and states, respectively. The agent chooses the actions ac-
cording to a policy π(at|st) : S × A → [0, 1] which indicates the probability of
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Fig. 1: Our architecture consists of an attention network (blue), which decides
the weighting of the sub-network outputs (red) to generate the policy and value
function on a task and state basis. The first convolutional layers are shared
between the attention network and the sub-networks. The weighted sub-network
policies are transformed by a task-specific layer (in green) to account for different
numbers of possible actions in different tasks.

choosing action at in state st. The objective is to find a policy that maximizes
the expected discounted return, i.e., to find

π∗ = max
π

(
Eπ

[ ∞∑
t′=0

γt
′
rt′

])

where γ ∈ [0, 1] is the discount factor for future rewards.
In this work, we train on this objective using asynchronous advantage actor-

critic training (A3C, [20]), a well established policy gradient method that uses
multiple asynchronous actors for experience collection. However, our approach is
general and can be readily applied to most on- and off-policy deep reinforcement
learning algorithms.

In multi-task reinforcement learning, the goal is to solve a set of tasks T
simultaneously by training a policy π(at|st, τ) and value function V (st, τ), also
referred to as critic, for each task τ ∈ T . While the objective to maximize the
discounted rewards in each of the tasks remains unchanged, an additional goal
is to share knowledge between tasks to accelerate training.

4 Architecture

Our network architecture, as shown in Figure 1, consists of a number of inde-
pendent sub-networks and an attention module that weights the output of all
sub-networks to generate a weighted policy and value function per task. The
policies are then used to choose the next action in each of the environments.
The attention and sub-networks all operate on top of a shared CNN that ex-
tracts high-level features of the environments. The attention network determines
whether sub-networks become specialized on certain tasks, or whether they learn
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features that are shared across a group of tasks. However, we do not explicitly
enforce this. Thus, we do not require any a-priori knowledge about the nature
of the tasks or about their similarity. In other words, we do not make any as-
sumptions about whether potential for positive or negative transfer exists.

4.1 Shared Feature Extractor

The first stage of our architecture consists of a CNN that outputs a state-
embedding φ(s). The embedding φ(s) is shared among all following sub-networks
as well as the attention network. Thus, φ(s) will learn general high-level features
that are relevant for all subsequent parts of the architecture. Since we do not de-
crease the dimensionality of the input in these layers, the architecture can in the
(worst) case, where no information can be shared, learn an approximate identity
mapping from s to φ(s) and leave the specialization to the sub-networks.

4.2 Attention Network

One could think of several ways how to combine the different sub-network out-
puts into a policy per task. One way would be to choose in each time step one
of the sub-networks directly as policy. However, this sort of hard attention leads
to noisy gradients (since a stochastic sampling operation would be added to the
computation graph) and no complex interactions of several sub-networks could
be learned. Therefore we employ a soft attention mechanism, where the final out-
put is a linear combination of the sub-networks’ outputs. Intuitively, this allows
all sub-networks that are helpful to contribute to the policy and value function.
This can also be seen as an ensemble, where different sub-networks with possibly
different specializations vote on the next action, but where the final decision is
governed by an attention network.

More concretely, the attention network consists of a CNN that operates on
the shared embedding φ(s). The output of the CNN is fed into a fully connected
network (FCN) that projects the output into a latent vector. This vector is
then concatenated with a one-hot encoding of the task ID τ from which the
input s originates, and processed further in the fully connected network. Finally,
a linear layer with softmax activation produces the attention weights wi(s, τ),
which decide the contribution of the policy and value functions of each sub-
network i in state s of task τ .

4.3 Sub-Networks

We use N sub-networks that contribute to the final weighted policy and value
function. The number of sub-networks can be chosen based on resource require-
ments and/or availability. In a practical application of our method, one would
choose the maximum number of networks for which the entire model still fits
into memory. Unused sub-networks can be automatically ignored by the atten-
tion network (see Section 6.4), and could potentially be pruned to reduce the
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overall number of parameters. In our experiments we choose a small number of
networks to show that we can achieve comparable or superior performance to
state of the art methods while requiring substantially fewer parameters. Specifi-
cally, we chose the number of sub-networks N depending on the number of tasks.
That is, we roughly add one sub-network for four tasks. More precisely we let
N = b(|T | + 2)/4c + 1, as we found this scaling to work well in our experi-
ments. The sub-networks can act independently, as in an ensemble, or specialize
on certain types of (sub-)tasks. The exact mode of operation depends on the
nature of the tasks and is governed by the attention network. In other words,
if the attention network decides that specialization is most beneficial, then the
sub-networks will be encouraged to specialize, and vice versa.

The sub-networks all have the same architecture and get the embedding φ(s)
as input. First, a CNN learns to extract sub-network specific features from φ(s)
that are then passed to a FCN. From the last hidden representation of the FCN,
a linear layer directly outputs the value function estimate Vi(s) for the i-th sub-
network. A softmax layer maps the last hidden representation of the FCN to a
|Amax|-dimensional vector pii(a|s), where |Amax| is the largest action space size
across all tasks.

4.4 Attentive Multi-Task Network

The attention weighted πi(a|s) is in the end fed to a task-specific linear layer that
maps it to the action dimension of each task, and a final softmax normalization
is applied to generate a valid probability distribution over actions, i.e., a policy.
More formally, the sub-network outputs πi(a|s) are combined into the final policy
as

π(a|s, τ) = softmax

(
Wτ ·

(
N∑
i

πi(a|s)wi(s, τ)

)
+ bτ

)
where Wτ ∈ R|Aτ |×|Amax| is a task-specific weight matrix and bτ ∈ R|Aτ | is a

task-specific bias. Note that Wτ and bτ are shared across the sub-networks and
only depend on the task.

Putting everything together, we use the attention weights wi(s, τ) to also
compute the final value function V (s, τ) from the outputs of the sub-networks
as

V (s, τ) =

N∑
i=1

wi(s, τ)Vi(s)

5 Task Environments

To evaluate our approach we create a set of environments which are designed
to have the potential for positive as well as negative knowledge transfer. Since
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Fig. 2: (a) Grid world environment template. (b) Example of a concrete grid
world instantiation. (c) Example of a concrete connect four state.

we aim at evaluating our approach on a large set of tasks, we opt for simple,
easy to generate environments, even though our initial results on the Arcade
Learning Environment [19] (not reported here) were promising as well. We leave
the adaption of our methodology to more complex environments to future work
as we aim to show the evolution of transfer depending on the number of tasks in
this report, which was not feasible on more complex tasks within our resource
constraints due to the large amount of networks trained (600 for Figure 4 alone)
and experiments conducted.

5.1 Grid Worlds

The first set of environments contains 20 grid world tasks. The environments of
this set consist of 8× 8 gray-scale images representing the state of the environ-
ment. The agent is a single pixel in the grid and the possible actions are moving
up, down, left or right. For all tasks, the goal is to reach a target pixel where
a positive reward is received and the episode terminates. The environments can
also contain additional objects that represent positive/negative rewards, as well
as impassable walls. All objects in the environments are at fixed locations, and
only the starting location of the player is random. Figure 2a shows the template
for all tasks and Figure 2b shows an example of such an environment as seen by
the agent.

In the following we give a detailed description of every variation, each defining
a task. In the first task, the goal is to find the target as fast as possible. No walls
or additional rewards are put into the environment, just the agent and the target.
To encourage speed, the agent is penalized with a small negative reward at every
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step. In the other tasks there is no such penalty, but if the player leaves the board,
a negative reward of −0.5 is observed and the episode is terminated. This is also
the only difference between task one and two: The goal of the second task is to
reach the target without leaving the board. In the third task, a bonus object is
added at location marked +1 in Figure 2a that yields a positive reward when
collected. In the fourth task, additionally to the bonus object of task 3, another
bonus object at location +2 and a penalty object at the location marked with
−1 are added. The penalty object yields a negative reward when collected. The
fifth and sixth task both contain three bonus objects at the locations marked
with a + in Figure 2a, where the sixth task additionally contains another penalty
object at location −2. Tasks 7 and 8 are visually indistinguishable from tasks 4
and 5, but we invert the rewards of the bonus and penalty objects in order to
test negative transfer. Similar to these two tasks, tasks 9 and 10 consist of three
objects looking like penalty objects (at locations marked with −) but yielding
positive reward. Task 10 additionally contains an object that looks like a bonus
object at location +1 (see Figure 2a) yielding a negative reward. Tasks 11 to
20 are the same as tasks 1 to 10 but additionally contain impassable walls.
The maximum achievable reward is set to 1.0 for all tasks, distributed equally
among bonus objects and target. For example, if there are three bonus objects,
the target and bonus objects yield rewards of 0.25 each. The penalty objects
give a negative reward that is equal in magnitude to the bonus objects’ positive
reward. In addition, walking into a wall yields a reward of −0.5. Furthermore, if
the agent does not reach the target after 200 steps, the task terminates without
any additional reward.

5.2 Connect Four

To test the behavior of our model on unrelated tasks with little to no potential
for knowledge transfer, we generate environments from a completely different
domain. We implement a two-player game based on connect four. Each location
or token is represented by a single pixel. The agent drops in a token from the
top, which then appears on top of the top most token in the column, or in the
bottom row if the column was empty. The goal of this task is to have four tokens
in a horizontal, vertical or diagonal line. Our connect four tasks consist of 8 rows
and 8 columns, and thus looks visually similar to the grid world tasks, but has
otherwise no relation to them. The agent has 8 different actions to choose from,
indicating in which column the token is to be dropped. An example of this is
shown in Figure 2c. If the agent plays an invalid action, i.e., if the chosen column
is already full, the agent loses the game immediately. When the agent wins the
game it receives a reward of 1, and −1 if it loses. In case of a tie the reward is
0. The opponent chooses a valid action uniformly at random. We additionally
implement three variations of this basic connect four task. The goal of the first
variation is to connect five tokens instead of four. The second and third variation
rotate the state of the connect four and connect five tasks by 90 degrees, such
that the players now choose rows and not columns.
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Table 1: Architecture details for the policy networks (value output is omitted
for readability). The base network is the basic network building block for Distral
and PNN, each having one such base network per task. Additionally PNN has
lateral connections and Distral has an additional base network for the shared
policy. The columns Shared CNN, Sub-networks and Attention network describe
our architecture (see Section 4 and Figure 1). The + in the attention network
Layer 4 indicates concatenation of the task embedding.

Base network Shared CNN Sub-networks Attention network

Layer 1 3x3x16, stride 2 3x3x32, stride 2 - -
Layer 2 3x3x16, stride 1 3x3x32, stride 1 - -
Layer 3 3x3x16, stride 1 - 3x3x16, stride 1 3x3x16, stride 1
Layer 4 FC 256 - FC 256 FC N · |T |+ |T |
Layer 5 Softmax |Aτ | - Softmax |Amax| FC 256
Layer 6 - - Softmax |Aτ | Softmax N

6 Experiments and Results

We evaluate the performance of our architecture on the set of grid worlds de-
scribed before and compare the results to two state of the art architectures:
Progressive Neural Networks (PNN) [26] and Distral [29]. PNN learns tasks se-
quentially by freezing already trained networks and adding an additional network
for each new task. The new networks are connected to previous ones to allow
knowledge transfer. The order in which the tasks are trained with our PNN im-
plementation is sampled randomly for all experiments. In contrast to PNN, but
similar to our approach, Distral learns all tasks simultaneously. Here, a distilled
policy π̂0 is used for sharing and transferring knowledge, while each task also
has its own network to learn task-specific policies π̂τ . We implement the KL+ent
2col approach (see [29]). The distilled policy network and the task-specific net-
works have the same network architecture as the base PNN model which is listed
as Base network in Table 1. Note that even though our architecture starts with
more filters in the shared CNN when compared to the base architecture, this
does not give us a parameter advantage, since those filters are shared across all
tasks while Distral and PNN get additional CNN parameters for each additional
task. For all approaches and all experiments, we use the same hyper parameters
which are summarized in Table 2. We chose these hyper parameters based on
the performance of all three approaches on multiple grid world tasks such that
no approach has an unfair advantage. We use the smallest multiple of |T | (the
number of tasks) which is equal or larger than 24 for the number of parallel
workers in the A3C training and distribute tasks equally over the workers. The
loss function is minimized with the Adam optimizer [14]. For PNN we had to
reduce the number of workers to 16, as the memory consumption for a large
number of tasks was too high. For Distral, we set α = 0.5 and β = 104 and
compute the policy as

π̂i(a|s) = softmax(αh(a|s) + f(a|s))
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Table 2: Hyper parameters used for the experiments.
Stacked input frames: 1 Discount factor γ: 0.99
Adam learning rate: 1e-4 Rollout length: 5
Adam β1: 0.9 Entropy regularization: 0.02
Adam β2: 0.999 Distral α: 0.5
Adam ε: 1e-08 Distral β: 104
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Fig. 3: Number of parameters of the different architecture choices with an in-
creasing number of tasks. Linear represents training each task in a separate
network of the size of PNNs base model.

where h is the output of the distilled network and f is the β-scaled output of
the task-specific network (see Appendix B.2 of [29]).

6.1 Model Size

First, we compare the model sizes of our Attentive Multi-Task (AMT) archi-
tecture, PNN, Distral and Linear. Linear simply represents training a separate
network (same size as the base network) on each task which leads to a linear
increase in parameters with each additional task. The results are shown in Fig-
ure 3. In our experiments we add a new sub-network to AMT for every fourth
task, thus the number of network parameters grows more slowly with the num-
ber of tasks than in the other approaches. Depending on memory requirements
we can easily increase or decrease the total number of parameters since we do
not assign sub-networks to tasks a-priori; more difficult tasks can automatically
be assigned more effective network capacity by the attention network.

Distral uses slightly more parameters than having a separate network for each
task due to the additional distilled policy network. The only way to reduce the
number of total parameters would be to decrease the size of the task networks.
However, unlike our approach, doing so could more strongly affect difficult tasks
that require more network capacity to be solved, or tasks that cannot profit
from the distilled policy due to a lack of transfer potential. One could tune each
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Fig. 4: The number of steps required when trained on a set of tasks to reach an
average score of at least 0.9 and a score of at least 0.8 on each task separately
over 105 steps. The median over 10 runs and for task set sizes between 1 and
20 is shown, where the tasks are sampled randomly from all grid worlds tasks.
The shaded area represents 30% to 70% performance of the runs. The number
of steps for Linear is calculated by extrapolating the median of all runs from
the other three approaches that are trained on one task only.

task network individually and, e.g., use larger networks for more difficult tasks,
but this would require a substantial tuning effort. In contrast, our method as-
signs effective network capacity automatically, and can thus utilize the available
network parameters more efficiently.

PNN also adds a new sub-network for each task and additionally connects
all existing sub-networks to the newly added one. Thus, the number of total
parameters grows super-linearly in the number of tasks. This parameter explo-
sion causes high memory consumption and high computational costs, which can
quickly become a problem when training on an increasing number of tasks with
limited hardware.

6.2 Sample Efficiency vs. Number of Tasks

In this section, we compare the performance of AMT to PNN and Distral when
trained on an increasing number of tasks. We perform 10 runs for each approach
and every number of tasks (from 1 to 20). For each of the 10 runs, the tasks are
chosen uniformly at random without replacement from all 20 grid world tasks.
The tasks are considered solved if the average score over 105 steps is at least 0.9
and each individual task has a score of at least 0.8. The results are shown in
Figure 4. The number of steps required to solve a given number of tasks scales
sub-linearly for all three approaches, i.e., training on multiple tasks requires
fewer interactions with the environment than training every task separately.
This means that knowledge is shared between different tasks in all approaches
as expected. For a larger amount of tasks, our approach is faster than PNN and
only slightly worse than Distral in terms of steps required to reach the given
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Fig. 5: Median scores over 10 runs. The shaded area represents 30% to 70%
performance of the runs. Training is performed on 6 tasks, where we switch the
action dimensions for 3 of them. This means that the agent goes to the left
instead of the right, to the top instead of the bottom, and vice versa. For AMT
and Distral, the solid line represents the average score of all tasks and the dashed
line represents the task where the lowest score is observed. For PNN (dotted), a
threshold score of 0.95 has to be reached over 105 steps before switching to the
next task. For each approach, the vertical line is drawn at the first point where
the score exceeds 0.9 over 105 steps.

performance threshold. Note however that our approach has substantially fewer
parameters than the other approaches in this large number of tasks setup.

6.3 Unaligned Action Spaces

To see whether the approaches can handle transfer between domains where the
action spaces are not aligned, we take the second, third and fourth grid world
task and switch their action dimensions, meaning that the agent goes to the left
instead of the right, to the top instead of the bottom, and vice versa. We combine
these new tasks with the original grid world tasks 2, 3 and 4 and train the three
different approaches to solve these six tasks simultaneously. Figure 5 compares
the number of steps required to reach a score of 0.9 on all tasks separately and
on average. Our approach clearly outperforms PNN and Distral in the number
of steps required the reach the target performance on all tasks. We see two ex-
planations for this: either two of our sub-networks specialize to the two sets of
tasks and allow fast transfer as such, or the task specific linear layer (Wτ , bτ )
in our architecture effectively learns to invert the action space of some tasks
such that two tasks from the two different sets look similar to a sub-network in
our architecture. Most likely, the improvement is due to an entangled combina-
tion of both explanations. The results of PNN are comparable to the previous
experiment as PNN is also able to deal well with unaligned action spaces. In
contrast to multi-task approaches however, PNN is bound to define a threshold
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Fig. 6: A smoothed average of the attention weights for 8 different grid world
tasks. Set 1 (blue) consists of tasks 3 to 6 and set 2 (orange) consists of tasks 7
to 10, for which the reward associated with the collectable objects are inverted.
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Fig. 7: Smoothed average of the attention weights for 8 different tasks of two
domains. Grid World (blue) consists of grid world tasks 3 to 6 and Connect
Four (orange) consists of the four connect-four/five tasks. The connect-four/five
tasks are almost exclusively learned into the second sub-network, while the grid
world tasks use mostly the third sub-network. We can see that there is a clear
separation between the weights of the tasks of the two domains.

for when to freeze the current task’s network weights and move on to the next
one. Further, a curriculum needs to be specified and tasks learned earlier cannot
profit from knowledge discovered during learning later tasks. Therefore PNN ul-
timately learns slower in this setup than our approach. Distral, an approach that
aligns the action space between tasks, requires more steps for these six tasks than
for randomly selected six tasks like in the previous experiment, as the distilled
policy cannot deal with the three environments and their counterparts at the
same time. This underlines our claim that, while other approaches are effective
for multi-task learning in a controlled setup, our approach is able to deal with
multiple tasks even if the action spaces are not aligned.

6.4 Analyzing the Learned Attention Weights

To give an insight in how tasks are separated into sub-networks we take a sub-
set of the grid world tasks where we expect negative transfer when knowledge is
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shared. More specifically, we take tasks 3 − 6 and 7 − 10. Note that these two
sets of tasks are visibly indistinguishable and equivalent apart from the fact that
bonus objects yield negative rewards and penalty objects positive rewards in the
second set. In Figure 6 we plot a smoothed average of the attention weights
wi(s, τ) of each task τ for all sub-networks i ∈ {1, 2, 3}. As can be seen in
the figure, our architecture discovers that three sub-networks are not needed for
these six tasks and learns to discard one of them. Further, one can see a tendency
that one set of tasks is learned into one of the sub-networks while the other set
of tasks is learned into the other remaining sub-network. Note however, that this
distinction is not sharp since there is still a lot of transfer possible between the
two sets of tasks, i.e., the agent has to stay on the board and find the target in
both sets. This brings us to the interesting question how the distribution of the
weights would look like if one uses two sets of tasks from completely unrelated
domains. To answer this question, we train our model on connect-four/five and
on grid world tasks. Figure 7 shows the weighting of the sub-networks when
trained on those tasks. Clearly, the second sub-network learns to specialize on
the connect-four/five task. Further, even though the connect-four/five and grid
world tasks are unrelated to each other, parts of the “connect-four-knowledge”
is used for the grid worlds while the non-overlapping state-action correlations
are safely learned in a separate sub-network. Again, one of the sub-networks is
left almost unused by all tasks, i.e., the model automatically learned that there
are more sub-networks than needed for the two task domains.

7 Conclusion

We present a multi-task deep reinforcement learning algorithm based on the in-
tuition of human attention. We show that knowledge transfer can be achieved by
a simple attention architecture that does not require any a-priori knowledge of
the relationship between the tasks. We show that our approach achieves transfer
comparable to state of the art approaches as the number of tasks increases while
using substantially fewer network parameters. Further, our approach clearly out-
performs Distral and PNN when the action space between tasks is not aligned,
since the task-specific weights and specialized sub-networks can account for this
discrepancy. In future work, we plan to apply our approach to more complex
tasks by incorporating recent, more resource efficient algorithms like [6, 10].
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4. Birck, M., Corrêa, U., Ballester, P., Andersson, V., Araujo, R.: Multi-task rein-
forcement learning: An hybrid a3c domain approach (01 2017)

5. Czarnecki, W.M., Jayakumar, S.M., Jaderberg, M., Hasenclever, L., Teh, Y.W.,
Osindero, S., Heess, N., Pascanu, R.: Mix&match-agent curricula for reinforcement
learning. arXiv preprint arXiv:1806.01780 (2018)

6. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y.,
Firoiu, V., Harley, T., Dunning, I., Legg, S., Kavukcuoglu, K.: IMPALA: scalable
distributed deep-rl with importance weighted actor-learner architectures. In: ICML
2018 (2018), http://proceedings.mlr.press/v80/espeholt18a.html

7. Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S., Darrell, T.: Reinforcement learning
from imperfect demonstrations. CoRR abs/1802.05313 (2018), http://arxiv.
org/abs/1802.05313

8. Glatt, R., da Silva, F.L., Costa, A.H.R.: Towards knowledge trans-
fer in deep reinforcement learning. In: BRACIS 2016 (2016).
https://doi.org/10.1109/BRACIS.2016.027, https://doi.org/10.1109/BRACIS.

2016.027
9. Gupta, A., Devin, C., Liu, Y., Abbeel, P., Levine, S.: Learning invariant fea-

ture spaces to transfer skills with reinforcement learning. CoRR abs/1703.02949
(2017), http://arxiv.org/abs/1703.02949

10. Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., van Hasselt,
H.: Multi-task deep reinforcement learning with popart. CoRR abs/1809.04474
(2018), http://arxiv.org/abs/1809.04474

11. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan,
D., Quan, J., Sendonaris, A., Osband, I., Dulac-Arnold, G., Agapiou, J., Leibo,
J.Z., Gruslys, A.: Deep q-learning from demonstrations. In: AAAI 2018 (2018),
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976

12. Higgins, I., Pal, A., Rusu, A.A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M.,
Blundell, C., Lerchner, A.: DARLA: improving zero-shot transfer in reinforcement
learning. In: Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017 (2017), http://proceedings.mlr.press/v70/higgins17a.html

13. Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W.M., Donahue, J., Razavi,
A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., Fernando, C., Kavukcuoglu,
K.: Population based training of neural networks. CoRR abs/1711.09846 (2017),
http://arxiv.org/abs/1711.09846

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980

15. Laroche, R., Barlier, M.: Transfer reinforcement learning with shared dynamics. In:
AAAI 2017 (2017), http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/
14315

16. Lehnert, L., Littman, M.L.: Successor features support model-based and model-free
reinforcement learning. CoRR abs/1901.11437 (2019)

17. Leong, Y.C., Radulescu, A., Daniel, R., DeWoskin, V., Niv, Y.: Dynamic inter-
action between reinforcement learning and attention in multidimensional environ-
ments. Neuron 93(2), 451–463 (2017)

18. Lin, L.J.: Reinforcement learning for robots using neural networks. Tech. rep.,
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science (1993)



16 T. Bräm et al.

19. Machado, M.C., Bellemare, M.G., Talvitie, E., Veness, J., Hausknecht, M.J., Bowl-
ing, M.: Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. CoRR abs/1709.06009 (2017)

20. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
ICML 2016 (2016), http://jmlr.org/proceedings/papers/v48/mniha16.html

21. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M.A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hass-
abis, D.: Human-level control through deep reinforcement learning. Nature (2015).
https://doi.org/10.1038/nature14236, https://doi.org/10.1038/nature14236

22. Parisotto, E., Ba, L.J., Salakhutdinov, R.: Actor-mimic: Deep multitask and trans-
fer reinforcement learning. CoRR abs/1511.06342 (2015), http://arxiv.org/

abs/1511.06342

23. Pohlen, T., Piot, B., Hester, T., Azar, M.G., Horgan, D., Budden, D., Barth-
Maron, G., van Hasselt, H., Quan, J., Veceŕık, M., Hessel, M., Munos, R., Pietquin,
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