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Abstract. Measuring hardness of individual instances in machine learn-
ing contributes to a deeper analysis of learning performance. This work
proposes instance hardness measures for binary classification in cost-
sensitive scenarios. Here cost curves are generated for each instance,
defined as the loss observed for a pool of learning models for that in-
stance along the range of cost proportions. Instance hardness is defined
as the area under the cost curves and can be seen as an expected loss
of difficulty along cost proportions. Different cost curves were proposed
by considering common decision threshold choice methods in literature,
thus providing alternative views of instance hardness.

1 Introduction

Measuring difficulty in machine learning (ML) strongly contributes to under-
standing the potential advantages and limitations of the learning algorithms.
Previous work has mainly focused on deriving complexity measures for datasets
[1, 7, 14]. Alternatively, the current work follows the instance-level approach,
focused on measuring hardness for individual instances. Instance hardness mea-
sures can be useful to a deeper analysis of algorithm performance and to in-
vestigate specific causes of bad learning behavior [17, 12]. Distinct areas of ML
have developed methods which somehow rely on measuring difficulty of instances
(e.g., dynamic classifier selection [20, 19, 4], noise detection [3, 18, 16] and active
learning [13]).

In [17, 16, 11], instance hardness is defined based on the learning behavior
of a pool of algorithms (e.g., the proportion of algorithms that misclassified the
instance). In [15], the authors addressed instance difficulty by proposing four
types of examples: safe (easy instances), borderline, rare and outliers (difficult
instances). Each instance is categorized into a difficulty type by considering
the distribution of classes in the neighborhood of the instance. However, these
straightforward ideas do not consider an important practical issue, which is
the cost associated to the classifier errors [5]. The costs of false positives and
false negatives may vary at deployment time. In this sense, misclassification in
specific areas of the instance space may have more significance. Instance hardness
measures should identify such areas by defining difficulty not only in terms of
observed errors, but also in terms of expected costs.
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Additionally, in cost-sensitive scenarios, when a model returns scores (e.g.,
class probabilities), decision thresholds can be adapted according to the error
costs. For instance, when the cost of false negatives is higher than false positives,
the threshold can be set to increase the number of positive predictions. In [9],
the loss of a model depends on the threshold choice method (TCM) adopted. Yet,
model performance for instances may vary too, requiring new hardness measures.

This work proposes a new framework to measure instance hardness for bi-
nary classification problems in cost-sensitive scenarios. Initially, the concept of
instance cost curve is proposed, which plots the loss produced by a model for
that instance along the cost proportions. A different instance cost curve is pro-
duced for each different TCM. This is a new concept which extends previous
work on cost curves, now aiming to evaluate and inspect loss for individual in-
stances. Instance cost curves were derived for five different TCMs: score-fixed,
score-driven, rate-driven, score-uniform and rate-uniform methods [9].

By plotting an instance cost curve, one can visualize how difficult the instance
is for each cost proportion. A global instance hardness measure can be defined as
the area under the cost curve (i.e., the expected loss obtained for a learned model
for an instance along the range of cost proportions). In order to avoid defining
instance hardness based upon a single model, the ensemble strategy proposed in
[17] was adopted here. More specifically, a set of instance cost curves is generated
using a pool of learned models and the average instance hardness is computed.

The proposed framework addresses different issues. First, it is possible to
identify the hard instances in a problem and under which operation conditions
(cost proportions) they are difficult. The use of different TCMs provides new per-
spectives for measuring hardness, including misclassification evaluation, proba-
bility estimation and ranking performance. Yet, for some TCMs, hardness can
be measured under cost proportion uncertainty. The instance-level approach also
supports the development of hardness measures for groups of instances and par-
ticularly class hardness measures. Different ML areas which already use instance
hardness measures can benefit from the proposed framework. The adequate hard-
ness measure must be chosen depending on the application objectives. For in-
stance, if one wants to improve class probability estimation, a hardness measure
based on scores should be adopted. We believe that such areas can be extended
more adequately to cost-sensitive scenarios by adopting the proposed measures.

2 Notation and Basic Definitions

The basic notation adopted in this work is based on [9]. Instances are classified
into one of the classes Y = {0, 1}, in which 0 is the positive class and 1 is
the negative class. A model m is a scoring function that receives an instance x
as input and returns a score s = m(x) indicating the chance of a negative class
prediction. A model is transformed into a classifier assuming a decision threshold
t. If s ≤ t then x is classified as positive and classified as negative otherwise.

The classifier errors can be associated to different costs. The cost of a false
negative is c0, while the cost of a false positive is c1. As in [9], the costs are
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normalized by setting c0 +c1 = b and the cost proportion c = c0/b represents the
operating condition faced by a model when it is deployed. For simplicity, this
work adopted b = 2 and hence c ∈ [0, 1], c0 = 2c and c1 = 2(1− c).

Let f0(s) and f1(s) be the score density functions respectively for the positive
and negative classes. The false negative rate obtained by setting a threshold t
is defined as F0(t) =

∫ t

−∞ f0(s)ds. The false positive rate, in turn, is defined as

F1(t) =
∫ t

−∞ f1(s)ds. The positive rate R(t) (i.e., the proportion of instances
predicted as positive) is R(t) = π0(1− F0(t)) + π1F1(t), in which π0 and π1 are
the proportions of positive and negative examples. The loss for a threshold t and
a cost proportion c is defined as:

Q(t, c) = c0π0F0(t) + c1π1F1(t)

= 2{cπ0F1(t) + (1− c)π1F1(t)}
(1)

A threshold choice method (TCM) is a function T (c) which defines the deci-
sion threshold according to the operation condition. The expected loss of a model
can be expressed as Eq. 2, in which wc(c) is the distribution of cost proportions:

L =

∫ 1

0

Q(T (c), c)wc(c)dc (2)

3 Instance Hardness and Cost Curves

By assuming uniform distribution of operation conditions, in [9] it is proved that
the loss L is directly related to different performance measures depending on the
TCM. If the threshold is fixed (e.g., 0.5) regardless c, L is the error rate at that
threshold. Under the score-driven TCM (i.e., T(c) = c), in turn, the loss is equal
to the Brier score of the model. Under the rate-driven method, when a threshold
is set to obtain a desired positive prediction rate, the loss is linearly related to
AUC. The appropriate measure depends on the cost-sensitive scenario.

Similarly, instance hardness may depend on the TCM. For instance, consider
three positive instances with scores 0.2, 0.6 and 0.8. The 1st instance is correctly
classified if a fixed t = 0.5 is adopted, while the 2nd and 3rd instances are false
negatives. In this case, instance hardness depends solely on the threshold and the
score. In case T (c) = c is adopted, the 1st instance is very easy since it is correctly
classified in a wide range of operation conditions. Yet, the 3rd instance is harder
than the 2nd one. Here, hardness also depends on the operation condition.

This paper proposes a new framework for instance hardness evaluation which
takes the above nuances into account. The expected model loss expressed in Eq.
2 is an aggregation over the operation conditions. The main idea is to transform
the loss function to be expressed as an aggregation over scores (instead of costs)
and then to define the contribution of each instance in the model loss. Initially,
Q(t, c) (Eq. 1) is decomposed into two functions respectively for false negatives
and false positives. For false negatives: Q0(t, c) = 2cπ0(1 − F0(t)). After some
algebraic operations, this term is defined as an integral over scores:
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Q0(t, c) = 2cπ0(1− F0(t))

= 2cπ0(1−
∫ t

−∞ f0(s)ds)

= 2cπ0(
∫
s
f0(s)ds−

∫
s
δ(s, t)f0(s)ds)

= 2cπ0(
∫
s
(1− δ(s, t))f0(s)ds

=
∫
s

2cπ0(1− δ(s, t))f0(s)ds

(3)

where δ(s, t) = 1 if s ≤ t and = 0 otherwise. Notice that a false negative occurs
when the instance is positive and 1 − δ(s, t) = 1, i.e., s > t. The expected loss
of the positive class over the operation conditions can be expressed as:

L0 =
∫
c
Q0(t, c)dc

=
∫
c

∫
s

2cπ0(1− δ(s, t))f0(s)dsdc

=
∫
s

∫
c
π0f0(s)2c(1− δ(s, t))dcds

(4)

In Eq. 4, a positive instance is associated to a loss 2c when it is incorrectly
classified, i.e., when 1−δ(s, t) = 1. Otherwise, the loss is zero. Then, the instance
cost curve for a positive instance with score s is defined as:

QI0(s, t, c) = 2c(1− δ(s, t)) (5)

Depending on the TCM, different curves can be produced along c. Instance
hardness is then defined as the area under the instance cost curve (the expected
loss for the range of operation conditions). In general, given a TCM T (c), the
hardness of a positive instance with score s is:

IHT
0 (s) =

∫
c

QI0(s, T (c), c)dc (6)

By replacing the instance hardness Eq. 6 in Eq. 4, the expected loss for
the positive class is alternatively defined as an aggregation of hardness over the
distribution of scores:

L0 = π0

∫
s

IHT
0 (s)f0(s)ds (7)

A similar derivation can be performed in order to define instance cost curves
and hardness values for negative instances. An error for a negative instance
occurs when δ(s, t) = 1 and the associated loss is 2(1 − c). The instance cost
curve for a negative instance with score s is defined as:

QI1(s, t, c) = 2(1− c)δ(s, t) (8)

Instance hardness assuming a function T (c) and the loss relative to the neg-
ative class is defined as:
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Fig. 1. Instance cost curves assuming the SF method.

IHT
1 (s) =

∫
c

QI1(s, T (c), c)dc (9)

L1 = π1

∫
s

IHT
1 (s)f1(s)ds (10)

In this work, the hardness measures for five TCMs [10] were derived. For
robustness, as in [17], a set of models can be used to compute the average
hardness across models. All implementations are provided in an online material1.

3.1 Score-Fixed Instance Hardness

The score-fixed (SF) method assumes a fixed threshold regardless the condition
c. Typically, t is set to 0.5. Consider a positive instance with score s > t. This
instance is always a false negative regardless c, as the threshold is fixed. In this
case, δ(s, t) = 0. By replacing it in Eq. 5, the instance cost curve is defined as:

QI0(s, t, c) = 2c (11)

In turn, the cost curve for a false positive instance is:

QI1(s, t, c) = 2(1− c) (12)

Fig. 1 illustrates the SF instance cost curves for false negatives and false
positives. For correctly classified instances, the cost curve is just a constant line
QI(s, t, c) = 0. By integrating QI, the instance hardness values respectively for
false negatives and false positives are derived as follows:

IHsf
0 (x) =

∫ 1

0

2cdc =
[
c2
]1
0

= 1 (13)

IHsf
1 (x) =

∫ 1

0

2(1− c) dc =
[
2c− c2

]1
0

= 1 (14)

1 https://tinyurl.com/y3cthlv8
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Fig. 2. Instance cost curves assuming the SD method.

For correctly classified instances (either positive or negative), IHsf (x) = 0.
The SF hardness is simply the 0|1 loss. By adopting a pool of models, instance
hardness is the proportion of incorrect classifications provided by the pool.

3.2 Score-Driven Instance Hardness

Although SF is frequently used, when the classifier errors have different costs, it
is sound to assign thresholds accordingly [6]. In the score-driven (SD) TCM [8],
the threshold is set to c (i.e., T (c) = c). For instance, if c = 0.7, the cost of false
negatives is high. By setting t = 0.7, the classifier predicts more instances as
positive, minimizing the number of false negatives. In the SD method, a positive
instance is predicted as negative when s > c and correctly predicted otherwise.
Then δ(s, t) = 0 if s > c, which results in the following instance cost curve (Eq.
15) by replacing δ(s, t) in Eq. 5. The area under the curve is defined in Eq. 16.
Fig. 2(a) illustrates the SD cost curve for a positive instance with s = 0.6.

QI0(s, t, c) =

{
2c, if s > c
0, otherwise

(15)

IHsd(x) =

∫ s

0

2cdc =
[
c2
]s
0

= s2 (16)

Since y = 0 for positive instances, the above measure can be replaced by (y−
s)2, which is the squared-error of the model. For negative instances, Eq. 17 and
18 define the cost curve and hardness measure. Fig. 2(b) illustrates the curve for
a negative instance with s = 0.7. For negative instances, y = 1. Again hardness
corresponds to (y − s)2, the squared-error. When the ensemble is adopted, the
hardness of an instance is the average squared-error obtained by the pool.

QI1(s, t, c) =

{
2(1− c), if s ≤ c
0, otherwise

(17)

IHsd(x) =

∫ 1

s

2(1− c) dc =
[
2c− c2

]1
s

= (1− s)2 (18)
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Fig. 3. Instance cost curve for a positive instance - RD method.

3.3 Rate-Driven Instance Hardness

The SD method is a natural choice when the model is assumed to be a class
probability estimator. However, SD is sensitive to the score estimation [9]. If
scores are highly concentrated, a small change in operating condition (and in
the threshold) may drastically affect performance. As an alternative, the positive
rate R(t) can be used to define thresholds [10]. In the rate-driven (RD) method,
the threshold is set to achieve a desired positive rate, i.e., T rd(c) = R−1(c). For
instance, if c = 0.7 the threshold t is set in such a way that 70% of the instances
are classified as positive. The operating condition c is then expressed as the
desired positive rate: c = R(t). Scores can be seen as rank indicators instead of
probabilities. The RD cost curve for a positive instance is defined as:

QI0(s, t, c) =

{
2c, if s > R−1(c)
0, otherwise

(19)

For R(s) ≤ c (equivalent to s ≤ R−1(c)) loss is zero. When R(s) > c, the
loss varies linearly. The RD hardness is defined in Eq. 20, which is related to
the position of the instance in the ranking produced by the model (i.e., R(s)).
Different from SD, which measures error, RD measures ranking performance. A
hard instance for SD may be easy for RD depending on the score distribution.

IHrd(x) =

∫ R(s)

0

2cdc =
[
c2
]R(s)

0
= R(s)2 (20)

An adjustment is necessary when the cost curve is built for real datasets. In
such case, the range of desired positive rates is continuous, whereas the number
of observed rates is limited by the dataset size. Fig. 3 shows the cost curve for x6
and model m1 in Table 1. The positive rate of x6 is 0.6, i.e., R(0.75) = 0.6. The
previous observed positive rate is 0.5 assuming the previous score 0.7 as threshold
(R(0.7) = 0.5). Instance x6 is correctly classified if the desired positive rate is
equal or higher than 0.6, (loss is zero for c ∈ [0.6; 1]). For c < 0.5, the instance
is classified as negative and its loss varies linearly. Positive rates between 0.5
and 0.6 can not be produced using m1. In such cases, the loss is estimated from
stochastic interpolation between 0.5 and 0.6 (dashed area in Fig. 3).
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Fig. 4. Instance cost curve for a negative instance - RD method.

Table 1. Example of instances and scores provided by four models.

Instance Label m1 m2 m3 m4

x1 1 0.70 0.60 0.00 0.65
x2 1 0.80 1.00 1.00 0.90
x3 1 0.80 0.95 0.93 0.88
x4 1 0.70 0.25 0.91 0.48
x5 0 0.80 0.68 0.78 0.74
x6 0 0.75 0.64 0.83 0.70
x7 0 0.10 0.37 0.78 0.24
x8 0 0.55 0.30 0.95 0.43
x9 0 0.80 0.72 1.00 0.76
x10 0 0.15 0.25 0.87 0.20

In the general case, the loss is zero for c ≥ R(s). If there are l instances
with score s, the previous observed positive rate is R(s)− l/n. For the interval
[0;R(s)− l/n], the loss is Q(s, T rd(c), c) = 2c. For the interval [R(s)− l/n;R(s)],
the loss is derived from interpolation of the rates R(s)− l/n and R(s) as follows:

Q0(s, T rd(c), c) = 2c
(

R(s)−c
R(s)−(R(s)−l/n)

)
= 2c

(
R(s)−c

l/n

)
(21)

When a positive rate c is desired, the instance is incorrectly classified with

the frequency
(

R(s)−c
l/n

)
. The hardness of positive instances can be derived as:

IHrd
0 (s) =

∫ R(s)−l/n
0

2cdc+
∫ R(s)

R(s)−l/n2c
(

R(s)−c
l/n

)
dc

=
[
c2
]R(s)−l/n

0
+ 2n

l

[
R(s)c2

2 − c3

3

]R(s)

R(s)−l/n

= (R(s)− l/n)2 lR(s)
n − 2l2

3n2 = R(s)2 + l
n

(
l
3n −R(s)

)
(22)



Cost Sensitive Evaluation of Instance Hardness in Machine Learning 9

For large values of n, the expression approaches R(s)2, which is equivalent
to the continuous case (Eq. 20). In turn, Eq. 23 defines the RD cost curve for
negative instances with score s and Eq. 34 the corresponding hardness measure.

QI1(s, t, c) =

{
2(1− c), if s ≤ R−1(c)
0, otherwise

(23)

IHrd(x) =

∫ 1

R(s)

2(1− c) dc =
[
2c− c2

]1
R(s)

= (1−R(s))2 (24)

Hardness is given by the square of the negative rate (1 − R(s)). It assesses
the ranking quality of the negative instances. For real datasets, the cost curve
is derived by interpolating the points R(s)− l/n and R(s):

Q1(s, T rd(c), c) = 2(1− c)
(
c−R(s)

l/n

)
(25)

Instance hardness is derived by Eq. 26. For large n, IHrd
1 (x) approaches

(1−R(s)2). Fig. 4 presents the RD curve for instance x4 using m1. The positive
rate of x4 is R(0.7) = 0.5. As there are two negative instances with score 0.7, the
previous rate is 0.3. The dashed area represents the interpolated loss in [0.3; 0.5].

IHrd
1 (x) =

∫ 1

R(s)
2(1− c) dc+

∫ R(s)

R(s)−l/n2(1− c)
(

c−R(s)
l/n)

)
dc

= (1−R(s))
2

+ l
n

(
l
3n + (1−R(s))

) (26)

3.4 Score-Uniform Instance Hardness

The SD method assumes that c is known at deployment and then adequate
thresholds can be chosen. However, in some situations the operating condition
is poorly assessed. In the worst case, a random selection is performed using the
score-uniform (SU) method [10]: T su(c) = U [0, 1]. The instance cost curve and
hardness for a positive instance can be derived as follows:

QI0(s, T su(c), c) =
∫ 1

0
QI0(s, t, c)dt

=
∫ 1

0
2c(1− δ(s, t))dt

=
∫ s

0
2cdt = 2cs

(27)

IHsu
0 (s) =

∫ 1

0

2csdc = s
[
c2
]1
0

= s (28)

The slope of the curve depends on s and ranges from 0 to 2c (i.e., from always
correctly predicted to always incorrectly predicted). For a positive instance, y =
0 and then IHsu

0 (x) = s = |y − s|, which is the absolute error of the model for
that instance. Similarly for a negative instance, IHsu

0 (x) = (1 − s) = |y − s|,
again the absolute error of the model as derived below.
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QI1(s, T su(c), c) =
∫ 1

0
QI1(s, t, c)dt

=
∫ 1

0
2(1− c)δ(s, t)dt

=
∫ 1

s
2(1− c)dt

= 2(1− c)(1− s)

(29)

IHsu
1 (s) =

∫ 1

0
2(1− c)(1− s)dc

= (1− s)
[
2c− c2

]1
0

= (1− s)
(30)

3.5 Rate-Uniform Instance Hardness

Similar to SU, uncertain operation conditions can also be defined in terms of
rates. By adopting uniform distribution of positive rates, the following cost curve
is derived for positive instances, with instance hardness defined in Eq. 32.

QI0(s, T ru(c), c) =
∫ 1

0
QI0(s,R−1(r), c)dr

=
∫ 1

0
2c(1− δ(s,R−1(r)))dr

=
∫ R(s)

0
2cdr = 2cR(s)

(31)

IHru
0 (x) =

∫ 1

0

2cR(s)dc = R(s)
[
c2
]1
0

= R(s) (32)

While hardness for RD is the square positive rate, for RU it is the absolute
positive rate. Poorly ranked instances will be more penalized, which is reasonable
since the operation condition is uncertain. For a negative instance, hardness is
its negative rate, as derived in the following equations.

QI1(s, T ru(c), c) =
∫ 1

0
QI1(s,R−1(r), c)dr

=
∫ 1

0
2(1− c)δ(s,R−1(r))dr

=
∫ 1

R(s)
2(1− c)dr = 2(1− c)(1−R(s))

(33)

IHsu
1 (s) =

∫ 1

0
2(1− c)(1−R(s))dc

= (1−R(s))
[
2c− c2

]1
0

= (1−R(s))
(34)

4 Experiments

This section provides examples of the proposed cost curves and hardness mea-
sures. Fig. 5 and 6 present the cost curves respectively for the negative and pos-
itive instances in Table 1 using SF, SD and RD. The hardest negative instances
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Fig. 5. Instance cost curves for negative instances considering the TCMs: SF (1st row),
SD (2nd row) and RD (3rd row).

Fig. 6. Instance cost curves for positive instances considering the TCMs: SF (1st row),
SD (2nd row) and RD (3rd row).



12 Ricardo B. C. Prudêncio

Fig. 7. Class cost curves and hardness under different TCMs.

are x1 and x4. In particular, x1 is even harder to rank, given the RD hardness.
Considering the positive class, x5, x6 and x9 have the highest hardness values.
However, for higher costs, they are easy for RD and SD. Different from SF, the
RD and SD methods can take advantage on the operation condition known in
deployment. Fig. 7 in turn presents the class cost curves produced by averaging
the instance cost curves for each class. Class hardness (CH) is defined as the
average instance hardness in a given class. It is an estimation of the class loss
defined in Eq. 7 and 10. By assuming SF and SD, the positive class is relatively
more difficult than the negative class. A more balanced difficulty is observed by
assuming the RD method. Although the scores of the positive instances are not
well calibrated, they can produce a good ranking of instances.

Fig. 8. German dataset visualized using PCA.
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Fig. 9. Hardness of instances for the German-Credit dataset.

Following, the framework was applied to a real dataset (German Credit, in
Fig. 8). The negative class is the majority (700 instances), while the positive class
has 300 instances. Both classes are largely spread, although the negative class
seems to be more compact. There is a class boundary in which the classes are
highly mixed. Five models were learned in this dataset using diverse algorithms
in Weka2, with scores computed by 10-fold cross validation. Scores were more
concentrated towards 1, as negative is the majority class. By considering a fixed
threshold 0.5, many errors were observed for the positive class, particularly in the
class boundary (see Fig. 9(d)). The negative class is much easier (class hardness
is 0.12 against 0.56 for the positive class). By considering SD, as thresholds are
adapted, instances are in general easier, compared to SF (see Fig. 9(b) and (e)).
In fact, positive class hardness is 0.37 for SD. As there are still some hard positive
instances in the boundary, this class is still much harder than the negative one
(whose hardness is 0.10). For RD, hardness is more balanced among classes.
Some negative instances are poorly ranked (see Fig. 9(c)). On the other hand,
some positive instances in the boundary, which are difficult for SF and SD, are
easier to rank (see Fig. 9(f)). For RD, class hardness is respectively 0.25 and 0.17
for negatives and positives. The negative class becomes harder than the positive.
Although with good absolute scores, the negative instances are harder to rank.

Differences in difficulty can also be analyzed at specific operation conditions.
For the negative class, higher losses tend to be observed for higher values of c, as
expected. However different patterns are seen depending on the TCM (see Fig.
10). For c = 0.8, the number of hard instances for RD is high, but extremely
hard instances are not observed. Notice that false positives are penalized by a low
cost in this case (1− c) = 0.2. For c = 0.5, in turn, some very hard instances in
the class boundary are observed for RD. Distinct patterns can also be observed
for the positive class, which is difficult for SD (see Fig. 11). For c = 0.2 in SD,

2 J48, IBk, Logistic Regression, Naive Bayes and Random Forest were adopted. IBK
adopted k=5. The other algorithms were applied using default parameter values.
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Fig. 10. Instance hardness for different c - Class 1.

most instances are hard, but not extremely hard as for c = 0.5. In this case, the
higher cost impacts instance hardness.

Fig. 12 presents the instance hardness for SU and RU, in which c is uncertain.
In these cases, hardness is more distributed and more difficult instances are found
beyond class boundary. Class hardness for SU is 0.22 and 0.54 respectively for
classes 1 and 0, which represents a harder scenario compared to SD. Similarly
for RU, class hardness is 0.39 and 0.35, which is greater than class hardness for
RD. The increase in hardness reflects the uncertainty in the cost proportions.

5 Conclusion

This paper proposes a new framework for measuring instance hardness in binary
classification. This work addresses different perspectives of evaluation by consid-
ering different TCMs in the definition of instance hardness. Future works point
at three directions: (1) derive new measures within the framework by adopting
other TCMs and distributions of operating condition; (2) perform more exten-
sive experiments on a large set of real problems using the proposed measures
- such studies would reveal advantages, limitations and relationships between
algorithms in different scenarios, which is relevant for understanding learning
behavior [2]; and (3) develop applications in different contexts. In dynamic al-
gorithm selection, for example, instance cost curves can be adopted to select
algorithms for specific regions in the instance space given the operation condi-
tion. In active learning, expected hardness can be used for selecting unlabeled
instances for label acquisition. In noise filtering and acquisition of missing values,
the effect of data preprocessing in the instance hardness can be analyzed.
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Fig. 11. Instance hardness for different c - Class 0.

Fig. 12. Instance hardness under the SU and RU methods.
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References

1. Basu, M., Ho, T. (eds.): Data complexity in pattern recognition. Springer (2006)
2. Brazdil, P., Giraud-Carrier, C.: Metalearning and algorithm selection: progress,

state of the art and introduction to the 2018 special issue. Machine Learning
107(1), 1–14 (2018)

3. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. Journal of Arti-
ficial Intelligence Research 11, 131–167 (1999)

4. Cruz, R., Sabourin, R., Cavalcanti, G.: Prototype selection for dynamic classifier
and ensemble selection. Neural Computing and Applications 29(2), 447–457 (2018)

5. Drummond, C., Holte, R.C.: Cost curves: An improved method for visualizing
classifier performance. Machine Learning 65(1), 95–130 (2006)

6. Flach, P., Matsubara, E.T.: A simple lexicographic ranker and probability estima-
tor. In: ECML 2017. pp. 575–582 (2007)

7. Garcia, L.P., Carvalho, A.C., Lorena, A.C.: Effect of label noise in the complexity
of classification problems. Neurocomputing 160, 108 – 119 (2015)

8. Hernández-Orallo, J., Flach, P., Ferri, C.: Brier curves: A new cost-based visuali-
sation of classifier performance. In: 28th Intern. Conf. on Machine Learning (2011)

9. Hernández-Orallo, J., Flach, P., Ferri, C.: A unified view of performance metrics:
Translating threshold choice into expected classification loss. Journal of Machine
Learning Research 13(1), 2813–2869 (2012)

10. Hernández-Orallo, J., Flach, P., Ferri, C.: Roc curves in cost space. Machine Learn-
ing 93(1), 71–91 (2013)

11. Luengo, J., Shim, S.O., Alshomrani, S., Altalhi, A., Herrera, F.: Cnc-nos: Class
noise cleaning by ensemble filtering and noise scoring. Knowledge-Based Systems
140, 27 – 49 (2018)
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