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Abstract. This paper aims at identifying sequences of words related to
specific product components in online product reviews. A reliable baseline
performance for this topic classification problem is given by a Max Entropy
classifier which assumes independence over subsequent topics. However,
the reviews exhibit an inherent structure on the document level allowing
to frame the task as sequence classification problem. Since more flexible
models from the class of Conditional Random Fields were not competitive
because of the limited amount of training data available, we propose using
a Hidden Markov Model instead and decouple the training of transition
and emission probabilities. The discriminating power of the Max Entropy
approach is used for the latter. Besides outperforming both standalone
methods as well as more generic models such as linear-chain Conditional
Random Fields, the combined classifier is able to assign topics on sub-
sentence level although labeling in the training data is only available on
sentence level.

Keywords: small data · topic classification · hidden markov model

1 Introduction

Product comparison websites provide detailed product reviews (further on referred
to as “expert” reviews) that usually differ from popular webshops’ user reviews
in length, quality and focus. A more concise representation of such expert reviews
can be obtained for instance by automated text summarization or aspect-based
sentiment analysis. A required subtask is to identify topics discussed in the
reviews. The specific task is to assign a set of predefined topics to the sections of
laptop reviews, where topics might be product components (e.g. display, keyboard,
performance) or review sections (e.g. introduction, verdict).

A common approach to solve this task is to use a Max Entropy (MaxEnt)
classifier which has been proven useful in a series of language classification tasks
such as sentiment analysis [12]. However, the expert reviews exhibit some high-
level structure on document level such as treating each topic one after another,
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without changing back and forth, or starting with an introduction and ending
with a verdict. In order to exploit the reviews’ structure, the task of assigning
topics is defined as sequence classification task in this paper. This differs from
what is known as document classification, as more than one topic per document
is assigned. It also differs from unsupervised topic modeling, as the topics of
interest are predefined in a labeled dataset with a label assigned to each sentence.

As the MaxEnt is trained to assign one label per sentence, it has no “memory”
to recall decisions on previous sentences in the review. Thus, a sequence model
such as the Hidden Markov Model (HMM) would be beneficial. An HMM can
capture the reviews’ inherent topic patterns by assigning labels at the word-level
where topic changes are infrequent. This allows for a more fine-grained labeling
even at sub-sentence-level.

The drawback of the HMM is its generative nature. A generative classifier
maximizes the joint probabilities P (w, s) = P (s) P (w | s) over the observed
input words w and the state labels s. Given label s, the probabilities over the
input features P (w | s) need to be generated. Discriminative models such as
MaxEnt directly train the conditional probability P (s | w) without the need for
modeling P (w) which is considered given in the classification task. The question
now arises if it is possible to have a sequence model where the relation between
states and observations are modeled by a MaxEnt classifier.

We show that the proposed method of combining the benefits of the HMM
with the discriminative power of a MaxEnt classifier successfully solves the
sequence classification problem: After a trained MaxEnt classifier has learned
to maximally separate the topics’ probability distributions, we transform the
MaxEnt based weights into HMM emission probabilities. Applying this method to
the laptop review dataset yields superior performance to the standalone models
and a more general discriminative sequence model. The combination of MaxEnt
and HMM has the additional advantage of assigning topics at word-level, thus
allowing for topic changes within sentence boundaries, although the classifier was
trained on sentence-level only. For simplicity, we refer to this combined method
as ME+HMM in the following.

2 Related Work

The idea of having a discriminative estimator in a sequence model is not new.
McCallum et al. [9] proposed the Maximum Entropy Markov Model (MEMM)
and eventually the more general Conditional Random Field (CRF) [5]. HMM and
the linear-chain CRF form a so called discriminative-generative pair, as do Naive
Bayes and logistic regression (MaxEnt) [22]. While, in principle, each classifier
of a discriminative-generative pair can be used to solve the same problem, their
training procedures differ concerning the optimality criteria. The generative
model estimates probabilities based on the feature frequency in the training data.
The discriminative model directly optimizes the conditional probabilities. For
sufficiently large datasets, Ng et al. [11] provide evidence that the discriminative
model produces a lower asymptotic error in classification tasks. The superiority of
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MaxEnt over Naive Bayes for text classification tasks is already well established
[4] and CRFs have been shown to outperform HMMs in tasks such as chunking
[20], table extraction [16] or information extraction [14]. Both shared tasks of
the 2015 [1] and 2016 [21] workshop on noisy user-generated text were focused
on Named Entity Recognition (NER) and featured successful submissions based
on CRFs. Why bother returning to HMMs?

The differences between HMM, MEMM, CRF and our ME+HMM are subtle.
Given the review document as a sequence of observed words W = (w1, . . . , wn)
and a sequence of hidden states S = (s1, . . . , sn), all models aim at finding the
optimal sequence S∗ by maximizing one of the following probabilities:

HMM: P (S,W ) =

n∏
t=1

P (st | st−1)P (wt | st) (1)

MEMM: P (S |W ) =

n∏
t=1

P (st | st−1, wt) =

n∏
t=1

1

Zst−1,wt

exp

(∑
i

λifi (st, st−1, wt)

) (2)

CRF: P (S |W ) =

1

ZW

n∏
t=1

exp

(∑
i

λifi (st, st−1,W )

)
(3)

In (2) and (3), λi represent learned weights for features fi that are computed
from a combination of words and states. While the HMM in (1) estimates the
joint probabilities of hidden states and input words, the MEMM in (2) estimates
S conditioned on the input W . Instead of modeling transition and emission
probability distributions as in (1), a MEMM models the probability of the
current state st based on the previous state st−1 and the current observation
wt. The normalization is done per state, distributing the probability “mass” at
each state among the succeeding states. This causes the label bias problem,
a bias towards states with fewer successors [5]. Linear-chain CRFs as in (3),
in contrast, model the joint probability of the entire state sequence given the
observed sequence. The normalization term is then a sum over all possible state
sequences [22].

The proposed ME+HMM is still a generative model, with the frequency
based estimation of emissions replaced by a conditional estimate provided by
the MaxEnt classifier. Thus, the task-related superiority of the discriminative
MaxEnt can be transferred to the HMM1. Even if the MaxEnt classifier is trained

1 This is why we call it a “semi-discriminative approach”.
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on sentence-level, the ME+HMM can assign labels on word-level which allows
for a higher granularity.

The CRF is the most general of the presented approaches and is usually applied
for tasks where many features are needed. Manual feature engineering is required,
leading to highly complex models and requiring large datasets. Inducing the most
meaningful features is then an additional computational effort with CRFs [8]. The
comparison with CRFs using a standard set of features similar to ME+HMM thus
stands to reason. Word emission and state transition probabilities in a CRF are
optimized simultaneously, but separately in our ME+HMM model. Alternative
approaches such as windowed neural networks, recurrent neural networks or
attention models have not been considered due to the limited size of the training
data in terms of numbers of full review documents. Besides, neural network
models such as seq2seq have only been applied on much shorter sequences of text
(e.g. 20newsgroups articles) and assign one topic per review [2].

3 Data

(a) (Initial) Topic Distribution

(b) Percent Vocabulary Overlap

Fig. 1: Dataset analysis. (a) The relative distribution on sentence-level of the
seventeen review topics and the topics’ likeliness to be the first in a review. (b)
The vocabulary overlap between all topics measured in per cent. The diagonal
(topic-topic) comparison is 100%. The average PVO is 33.22%.

The performance of the ME+HMM model is assessed on a dataset of expert
reviews on laptops collected from several product testing websites2. The full
dataset contains 3076 reviews manually annotated on sentence-level with one

2 The dataset is available at https://github.com/factai/corpus-laptop-topic
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out of 17 predefined target topics. Not all topics are laptop related, some refer
to specific review sections. Figure 1a lists the 17 topics and provides a detailed
overview of the topics’ (initial) distribution. The smallest topic set is review
info (review metadata) with 887 sentences and the largest is performance/hw
with 57819 sentences, which accounts for almost 25% of available data. Topics
vital for a laptop rating are discussed regularly throughout the reviews (e.g.
performance/hw), while topic webcam for instance only occurs if a laptop possesses
this component. Nonetheless, these minor topics are interesting aspects to analyze.
Note that some topics never start a review at all, while about 80% of reviews
either start with an introduction or a summary. This suggests that the label
summary might be ambiguous and not easily separable from the introduction.

The laptop dataset is different from well-known benchmarking datasets. Each
review is available as one file to exploit the sequence information of the topics.
Moreover, the expert reviews are much longer and more detailed than user reviews:
The average review length in the laptop dataset is 78 sentences. Concerning
the granularity, classical benchmarking datasets for topic classification provide
only one topic per document. Topics for each sentence are provided in datasets
designed for aspect-based sentiment analysis. However, Pontiki et al. [18], for
instance, do not provide full documents, meaning that the sentence sequence
is not reproducible3. While full documents are available in [17], the reviews in
this dataset consist of typically up to fifteen sentences only and do not exhibit a
latent topic structure.

3.1 Topic Separability

As classification accuracy correlates with class separability, percent vocabulary
overlap (PVO) is used to measure the amount of vocabulary terms shared by two
topics [10]. Ti denotes the set of terms occurring in topic Si:

PV O (S1, S2) =
| T1 ∩ T2 |
| T1 ∪ T2 |

· 100 (4)

Figure 1b suggests that the topics webcam, warranty and review info use a more
distinct vocabulary, whereas the non-laptop topics (e.g. summary) are not as well
separable. Given the considerable overlap between topics, the frequency-based
estimation of emission probabilities in a standard HMM is not a good choice.

The ability of the MaxEnt classifier to optimize the discrimination between
classes can be exploited for the HMM. Table 1 gives an overview of the ten highest
weighted words in four exemplary topics as learned from a MaxEnt classifier.
Even for the seemingly similar topics sound and noise, these high scoring words
do not overlap. The same is true for a linear-chain CRF. The discriminative
models MaxEnt and CRF learn to select significant features to separate the topics.
Some variance between the two models is only observed with the topic summary,
as the CRF also ranks two specific product names (“ideapad”, “aspire”) high.
This analysis suggests that the MaxEnt weights could improve the performance
of a standard HMM.
3 The sentence IDs provided in [18] are neither consecutive nor contiguous.
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Table 1: Ten highest scoring terms in four exemplary topics when based on
MaxEnt or CRF weights. (∗) BOS denotes the beginning of the sequence in the
CRF.

MaxEnt
Sound Noise Temperature Summary

sound db cool verdict
speech quiet heat quietly
bass noise hot lasts
volume fan lap drawbacks
speaker silent temperatures flaws
audio hear thighs compromises
speakers audible warm recommend
headphones noisy heats price
sounded noiseless warmer money
equalizer fans warmth conclusion

CRF
Sound Noise Temperature Summary

speakers fan degrees BOS (∗)

sound noise cool $
audio db temperatures price
bass quiet ◦c comparison
volume silent heat verdict
music fans warm db
stereo load temperature life
headphones audible cooling performance
speaker idle hot ideapad
loud loud lap aspire

4 Methods

At first, the MaxEnt classifier is trained on the labelled sentences. Let C =
{1, . . . , c} be the set of topics and D = {1, . . . , d} the dictionary. As topic labels
are available for each sentence W = (w1, . . . , wn), the input to the MaxEnt
classifier are bag-of-word (BoW) vectors V = (v1, . . . , vd) based on absolute word
counts in the sentence: vi =

∑n
t=1 1 (wt = i). The MaxEnt classifier assigns topic

j ∈ C given the input sentence with the probability

P (S1 = j, . . . , Sn = j | V1 = v1, . . . , Vd = vd) =
1

Z1
exp

(
d∑

i=1

λijvi + nµj

)
,

(5)

where Z1 = Z1(v1, . . . , vd) is a normalization constant. In (5), the bias term
µj has been scaled for the length of the input n to account for the simple counting
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strategy. Note that in most standard settings, MaxEnt is applied to tf-idf values
such that the adjustment related to sequence length is not necessary.

Since the BoW vector are very sparse, it is more efficient to iterate over the
words in the sentence instead of the dictionary:

P (S1 = j, . . . , Sn = j |W1 = w1, . . . ,Wn = wn) =
1

Z1

n∏
t=1

exp (λwtj + µj) (6)

Next, the HMM is initialized. M = (A,B,C,D, π) defines an HMM over
the set of hidden states C and the set of observations D. An HMM starts in
some state s1 with the probability πs1 and emits an observation w1 following the
emission probability distribution of state s1. Then, the model transitions to a
new state and again emits an observation. By this, the random sequence of topics
S generates the sequence of observations W , the words in the review document.

The probability of a transition from state st−1 to st is given by the transi-
tion probability matrix A ∈ Rc×c. The emission probability matrix B ∈ Rc×d

denotes the probability of observing wt in topic st. π ∈ Rc determines the initial
distribution of states:

aij = P (St = j | St−1 = i) (7)

bjk = P (Wt = k | St = j) (8)

πi = P (S1 = i) (9)

4.1 Emission Probabilities

A straightforward estimate of emission probabilities is counting the word occur-
rences within each topic or using their tf-idf values. We propose to rely on the
discriminative power of the MaxEnt classifier instead and transform the condi-
tional probability distribution of the previously trained classifier into emission
probabilities.

Using a stationary HMM for generating the words, we have

P
(
W̄ = W , S̄ = S

)
=

n∏
t=1

P (Wt = wt | St = st)︸ ︷︷ ︸
bwtst

·P (St = st | St−1 = st−1)︸ ︷︷ ︸
ast−1st

(10)

The MaxEnt assumes that words are independent (by relying on frequencies vi
and ignoring word order). Assuming this for the HMM, too, gives ast−1st = ast =
P (St = st) which is independent of step t− 1 and (because of the stationarity)
independent of t, too. Thus, (10) becomes

∏n
t=1 bwtst · ast . Dividing by the

probability P
(
W̄ = W

)
= Z2 of the given sequence w1, . . . , wn yields

P
(
S̄ = S | W̄ = W

)
=

1

Z2

n∏
t=1

bwtst · ast (11)
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We want equivalence for the HMM and MaxEnt models for s1 = s2 = . . . = sn.
Now, let st = j ∀t ∈ {1, . . . , n} so that equaling (6) and (11)

1

Z1

n∏
t=1

exp (λwtj + µj) =
anj
Z2

n∏
t=1

bwtj (12)

is, for instance, solved by applying Bayes’ theorem to the emission frequencies
bi,j

bjk = exp (λkj + µj) ·
Z2

Z1pj
= exp (λkj + µj) ·

P
(
W̄ = W

)
Z1aj

(13)

In practice, the HMM emissions are thus computed by

1. training a MaxEnt on the labeled sequences assuming independence between
words yielding the λkj

2. estimating the overall word frequency in the training corpus p̂w by counting

3. translate MaxEnt weights into emission probabilities by substituting p̂w for
Z2 in (13) and normalizing with respect to

∑d
i=1 bjk = 1 instead of dividing

by Z1pj

4.2 Transition Probabilities

The initial distribution πi and the transition probabilities aij are estimated from
the training data using the smoothed relative frequencies of word-wise topic
changes (additive smoothing). A pseudo-count α > 0 serves as regularization
term to prevent zero probabilities for unseen transitions in the training data [6]:

âi· =
ai· + α∑c

j=1 (aij + α)
for i = 1, . . . , c (14)

Tuning the smoothing parameter α also allows for more or less conservative
topic changes, even within sentence limits.

4.3 Decoding

The model M is used to decode the sequence W by assigning the most likely se-
quence of hidden states w.r.t. the joint distribution. Two different dynamic
programming algorithms are used to solve this decoding problem [15]: On
the one hand, the Viterbi algorithm computes the globally optimal solution
S∗ = arg maxS P (W,S). The posterior decoding algorithm, on the other hand,
generates locally optimal solutions S∗ = {si | si = arg maxk

∑
S P (si = k |W )}.

The performance of the algorithms is evaluated in the following experiments.
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5 Experiments and Results

The laptop review dataset is used for several experiments: At first, the performance
of the MaxEnt classifier is reported as baseline. Next, the differences of the HMM
decoding algorithms are investigated on the laptop review dataset by applying
a standard, frequency based HMM. The results are compared to those of the
combined algorithm ME+HMM and a linear-chain CRF with comparable features.

The MaxEnt is trained using count-based BoW features for each sentence.
The HMM and the CRF decode on word-level. For better comparison, the results
of HMM, CRF and ME+HMM are reported on sentence-level by assigning to
each sentence its most frequent topic. All classifiers are implemented in Python 3.
Table 2 reports weighted accuracy, precision, recall and F1 scores as defined in
the documentation of the Python package scikit-learn [13] for all classifiers. Most
algorithms are also taken from the scikit-learn package. If not stated otherwise,
default parameter settings are applied. Except for lowercasing, the data is not
preprocessed for the experiments. Especially, stopwords are not removed, as it
would corrupt the text sequence for the HMM.

5.1 MaxEnt as Baseline

The implementation of the MaxEnt classifier is the SGDClassifier from scikit-
learn with loss=’log’ and tf-idf vectors as input. alpha is set to 0.00001, the
class weight is auto and the number of iterations is 1000. The MaxEnt achieves
an overall accuracy of 70%. A closer look at the individual topic results (see
sparkline in Table 2) reveals that some topics are harder to classify while others
reach accuracy scores of more than 80%. Low performance is mostly related to
either poor vocabulary separability (e.g. introduction and summary) or little
evidence in the dataset (e.g. review info). Topics related to laptop specific content
yield the best performance.

5.2 Standard HMM

For comparison, a standard HMM using word counts per topic as emission prob-
abilities has been implemented4. Transition probabilities and initial distribution
are estimated as well. The smoothing parameter α = 0.0001. Implementation
details for the Viterbi and the posterior decoding algorithm such as log space
and scaling as provided in [7] are considered. The experiment serves to deter-
mine the performance difference of the algorithms. The overall accuracy for the
Viterbi algorithm reaches 60.16%, thus outperforming the 53.6% of the posterior
algorithm (see Table 2).

As expected, the standard HMM cannot compete with the performance of
the MaxEnt classifier, irrespective of the decoding algorithm. The additional
information about topic transitions is not enough to compensate for the less
competitive emission probabilities. A performance loss is observed for both

4 The HMM algorithm is no longer supported in the sklearn library.
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Table 2: Results for all classifiers on the given laptop review dataset using 5-fold
cross validation. Accuracy, precision, recall and F1 score are weighted by the
number of sentences in each topic. The sparklines indicate the accuracy results
for each topic in the same order as in Figure 1a. Each horizontal line denotes the
baseline MaxEnt accuracy of 70%.

Algorithm Accuracy per Class Accuracy Precision Recall F1 score

MaxEnt 70.00% 71.46% 70.00% 70.13%

HMM (Viterbi) 60.16% 68.92% 60.16% 61.89%

HMM (posterior) 53.60% 68.59% 53.60% 56.95%

CRF 39.86% 49.63% 39.86% 40.08%

ME+HMM (Viterbi) 75.41% 77.40% 75.41% 74.30%

ME+HMM (posterior) 76.84% 78.74% 76.84% 75.62%

algorithms. The only exception is topic build/case which is due to the HMM
assigning the first topic as default when topics have equal probability. The
precision scores do not differ considerably from the MaxEnt.

5.3 MaxEnt Emissions for HMM (ME+HMM)

For combining the MaxEnt probability distributions with a HMM, the weights
λwtj , µj are extracted from the trained MaxEnt classifier to calculate the con-
ditional probabilities per word and topic following (13). During training, the
normalized word frequencies p̂w are stored. Transition probabilities and initial
distribution remain the same as for the standard HMM in Section 5.2.

These more distinctive emission probabilities raise the performance of the
classifier (see Table 2). ME+HMM performs not only better than the standard
HMM, but also outperforms the MaxEnt classifier by approximately 7% on
average. Except for ports/specifications, all laptop-related topics achieve over 80%
accuracy. A performance drop when compared to the MaxEnt is only noticeable for
the topics review info and summary/verdict. The low performance of review info
is due to the topic being under-represented in the training data. The performance
of the topic summary might be caused by issues in the training data, as will be
discussed in Section 6.
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5.4 Comparison of ME+HMM and CRF

For compatibility with sklearn, the sklearn-crfsuite5 is chosen as implemen-
tation for the linear-chain CRF. The training algorithm is set to lbfgs (gradient
descent) and the L2 regularization coefficient to 100. Although way below the
capabilities of a general CRF, only the current and previous word identities
and the beginning of a sequence (BOS) are used as features to allow for a fair
comparison. Being a standard method for tasks like NER with a restricted set
of states, the CRF cannot handle topics that overlap as much as in the given
laptop dataset. With estimating both emission and transition probabilities si-
multaneously, the CRF has too many degrees of freedom to capture the less
frequent topics, thus the overall accuracy reaches only 40%. The combined model
ME+HMM has its strengths with longer, subsequent sequences of topics. For the
transition probabilities, a discriminative estimation is not necessary.

6 Discussion

A CRF with basic features was implemented for a fair comparison to the other
models. In this setting, the CRF does not perform well. With a larger set
of handcrafted features, the CRF will eventually perform comparably to the
proposed model. The current trend towards deep learning models is supposed
to mitigate the feature engineering requirement. Those models should implicitly
learn input representations, but require a careful architecture design and an
abundance of training data, especially for modeling long input sequences. For
the given problem setting, ME+HMM fills the gap by performing with standard
features: no manual effort is required and the size of the given dataset is sufficient.

Concerning the decoding algorithm, the results suggest that for ME+HMM
the posterior algorithm is slightly superior to the Viterbi algorithm, as opposed
to the standard HMM. Schwartz [19] noted that the Viterbi algorithm most likely
does not find the optimal path in case its probability is low and many other
paths have almost equal probability. In this case, the posterior decoding may
outperform the Viterbi algorithm.

The experiments have shown that the model ME+HMM is superior to other
classifiers in assigning topics on sentence-level. Although the dataset is designed
as a sentence classification task, the document structure of the expert reviews
can be exploited. This allows to assign more than one label per sentence which is
convenient for contrasting or comparison sentences (e.g. “on the one hand, on the
other hand”), for concessive clauses (e.g. “although”, “despite”) or enumerations.
Table 3 is an illustrative example taken from a review, where the ME+HMM
classification (bottom) differs from the gold annotation (top). In the gold anno-
tation, only the topic keyboard is assigned to the second sentence, although also
the touchpad is discussed, as accurately captured by ME+HMM. Although the
advantage of intra-sentence topic changes cannot be captured directly due to the
lack of granularity in the dataset, the example suggests that word-level topic

5 https://sklearn-crfsuite.readthedocs.io/en/latest/index.html
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assignments could be promising and reveal additional insight on the product, as
in the example case.

Table 3: A sample sequence taken randomly from a review. The gold labeling
suggests three different topics (top), the ME+HMM model assigns four topics
(bottom).

(Gold labels)
Otherwise, the approx. 3.3 kilogram heavy case didn’t actually knock our socks off:
design, workmanship and materials are only second rate. The input devices could
also be a lot better (small touchpad, clattery keyboard, single-rowed
enter, etc.). The main point of complaint is the enormous noise development,
typical for a gamer: the fan is clearly audible during load.

(ME+HMM)
Otherwise, the approx. 3.3 kilogram heavy case didn’t actually knock our socks off:
design, workmanship and materials are only second rate. The input devices could
also be a lot better (small touchpad, clattery keyboard, single-rowed
enter, etc.). The main point of complaint is the enormous noise development,
typical for a gamer: the fan is clearly audible during load.

Build/Case Noise Keyboard Touchpad

Another interesting insight from the experiments is the low performance of the
topic summary. A closer investigation reveals that summary is often misclassified
as introduction. The topic distribution in Figure 1a illustrates an unbalance
between introduction and summary, although it can be assumed that most of the
reviews consist of both an introduction and a summary. However, the dataset
consists of more than three times as many summary sentences. It could still be
argued that summaries in this dataset are simply longer, i.e. consist of more
sentences, but also the distribution of initial topics suggests that some sentences
might misleadingly be labeled as summary. Thus, the label quality of the sequence
models is probably even higher as the numbers suggest.

7 Conclusion and Future Work

Faced with a new dataset for sentence-level topic classification on laptop reviews,
we introduce the model ME+HMM, a combination of MaxEnt-based weights
and an HMM. The expert laptop reviews are detailed articles with an inherent
topic structure. The MaxEnt classifier in general performs well on language
classification tasks, but can profit from a sequence model that also captures
the transitions between topics within one review. On the given dataset, the
new model ME+HMM improves the performance of the standalone MaxEnt
classifier and also outperforms more general models such as a linear-chain CRF
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with comparable features. Although the ME+HMM is trained on sentence-level,
labels are assigned at word-level, which allows for detecting intra-sentence topic
changes. The ME+HMM relies on well established concepts and incorporates
preliminary knowledge: A frequency-based estimation of transitions is reasonable
for the infrequent topic changes on word-level. Concerning the emissions, the
conditional estimation performs best. The combination of MaxEnt and HMM
eliminates the excessive degrees of freedom of a generalized model leading to an
approach with less complexity for comparable tasks.

The results from the topic classification task can be included in tasks such as
aspect-based sentiment analysis. For automated text summarization or generation,
it would be interesting to see the ME+HMM model generate topic sequences as
outlines.
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