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Abstract. Before constructing a classifier, we should examine the data
to gain an understanding of the relationships between the variables, to
assist with the design of the classifier. Using multi-label data requires
us to examine the association between labels: its multi-labelness. We
cannot directly measure association between two labels, since the la-
bels’ relationships are confounded with the set of observation variables.
A better approach is to fit an analytical model to a label with respect
to the observations and remaining labels, but this might present false
relationships due to the problem of multicollinearity between the obser-
vations and labels. In this article, we examine the utility of regularised
logistic regression and a new form of split logistic regression for assess-
ing the multi-labelness of data. We find that a split analytical model
using regularisation is able to provide fewer label relationships when no
relationships exist, or if the labels can be partitioned. We also find that
if label relationships do exist, logistic regression with l1 regularisation
provides the better measurement of multi-labelness.

1 Introduction

Multi-label classification models allow the classification of a set of unknown
binary labels conditioned on a set of known observations. A review of common
multi-label classification algorithms is given in [7].

Before modelling any data, we should examine it to determine an appropriate
form of model for the data. When faced with multi-label data, we must also
examine the relationships between the labels to determine the multi-labelness
of the data: if a multi-label model is appropriate and how the labels should be
modelled. If we can detect that a given set of labels are independent from each
other, we can include this knowledge in the model, making the fitting time faster,
resulting in a less complex model.

Unfortunately, measuring high correlation between a pair of label variables
does not imply that the multi-labelness of the data is high, since the correlation
might be explained by a set of confounding observation variables. Therefore, to
determine the set of relationships between labels, we must model each label,
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with respect to all other labels and all observation variables, and examine the
coefficients of the model. The number of non-zero coefficients between labels of
the model provide us with a measure of multi-labelness of the data.

When modelling the response of a label, with respect to the remaining labels
and the observation variables, we introduce the problem of multicollinearity;
there is likely to be correlation between the observation variables and the labels,
so it is also likely that many subsets of observation variables and labels provide
an equally good fit to the data, but our model will only provide one subset. This
implies that even though a label is independent of other labels, the model may
show association to other labels due to their multicollinearity with the set of
observation variables, and suggest a false high multi-labelness of the data.

In this article, we investigate the use of logistic regression in a full and split
form to measure the multi-labelness of the data. The contributions of this article
are:

– Derivation of a split analytical model with regularisation (Section 3.2).
– Investigation of the utility of a full and split regularised model for mea-

suring multi-labelness on synthetic data using various multi-label structures
(Section 4).

– Verification of the analysis using real data (Section 5)

The article will proceed as follows: Section 2 introduces the problem and required
background knowledge, Section 3 introduces measuring multi-labelness with full
and split analytical models. Section 4 examines the utility of each analytical
model for measuring multi-labelness on generated data. Finally, Section 5 verifies
the findings using real data.

2 Background: Multi-label data and multicollinearity

The multi-label classification problem requires modelling L label set variables
y ∈ {−1,+1}L conditioned on a set of M observation variables x ∈ RM . Typi-
cally, sample data is provided as a set of N label sets and associated observations
(y,x), where the task is to construct a model f that provides good estimates of
the label sets ŷ conditioned on the observations, such that ŷ = f(x), for a given
metric [3, 4].

A common technique for modelling multi-label relationships is to construct a
set of models that predict only one label variable yi or a subset of labels, based
on the observations and a subset of the remaining labels. The coefficients of the
models β provide us with insight of the level of association of the label yi to each
observation variable and remaining labels. For example, single label models can
be chained [6, 5], use a tree structure [2] or even retain cyclic dependencies in a
network [1, 8]. In each of these cases, higher level models predict the state of a
label based on the predicted states of other labels. This implies that any error in
label classification will be propagated through to other labels. Therefore, when
constructing these models, if we can remove model dependencies between labels
and maintain accuracy, then we should do so.
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Before we fit a multi-label model to data, we should examine the data and
determine if there is association between the labels; we call this measuring the
multi-labelness of the data, where the measurement of multi-labelness is the
number of inter-label relationships. Why is it important to examine the multi-
labelness of the data?

– If no labels are associated to each other, then the multi-label problem reduces
to a set of binary classification problems.

– If there are at least two sets of labels that have no association between them,
then we can split the multi-label problems into a two or more multi-label
classification problems, each independent of each other.

Also, knowing which labels are correlated will assist us in designing a suitable
multi-label classifier.

Problem: Confounding variables When determining the dependence of one label
variable yi to another yj , we must note that the set of observation variables are
confounding variables. Both labels yi and yj are dependent on the observations
x, so any association between the labels might actually be explained entirely
by the observations x. Therefore, we must take our analysis a step further and
model the variance of yi with respect to each observation x and each other label
variable y−i. The fitted analytical model coefficients β will describe the level of
association of yi to x and y−i.

Analytical models are fitted to data to provide us with deeper insight into
the generating process behind the data. For example, when using simple linear
regression, we can observe the fitted model coefficients β to identify how each of
the observed variables effects the response variable. For our data we will model
a given label yi with respect to the observations x and the remaining labels y−i.
The coefficients of the analytical model β show which of the elements of x and
y−i are associated to yi. If a coefficient βi is found to be 0, we then assume that
there is no association between the associated covariate and the response.

Problem: Multicollinearity Unfortunately, the correlation between labels, that we
use to improve the accuracy of predictions of a multi-label model, cause problems
when analysing the coefficients of the analytical models. Multicollinearity occurs
when two or more dependent variables are linearly related, and therefore, the
analytical model can use different linear combinations of each variable to obtain
the same model accuracy. In our case, we have the response label yi in which we
want to determine its relationship to the observed variables x and the remaining
labels y−i.

yi = f(x,y−i;βi) (1)

If we believe that another label yj is also dependent on x, we get the relationships

yi = f(x, yj ,y−(ij);βi), yj = f(x;βj) (2)
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where y−(ij) is the set of labels y excluding the labels yi and yj . If the above
relationships hold, do we then conclude that the label yi is dependent on yj ,
or do we conclude that it is not dependent on yj but dependent on x, since
yj is dependent on x? The former will suggest high multi-labelness, while the
latter suggests low multi-labelness. Fitting a model to data containing the above
relationships will provide a fit, but will not reveal the additional information that
there may be another preferred fit that is just as suitable. In fact by definition,
multi-label data must contain multicollinearity between the x and y, otherwise
we would not be able to obtain accurate label predictions (the set of labels must
be associated to the set of observations).

If multicollinearity effects all multi-label models, we must ask how it effects
the fit of analytical models and the measurement of multi-labelness, and what
we can do to control it. In the next sections, we will investigate the effects of
different forms of regularisation on multi-label analytical models

3 Analytical models for measuring multi-labelness

Analytical models can be used to gain insight into the associations between each
label, which in turn allows us measure the multi-labelness of the data. But as we
showed in the previous section, multi-label data suffers from multicollinearity,
therefore, there may be many combinations of observation variables and label
variables that can provide a good fit to a given label yi.

Two well known forms of regularisation may be useful in reducing the effect
of multicollinearity; the l2 and l1 norm. Analytical models provide a set of co-
efficients β that show how much of the variance of the response is explained by
each covariate. Given the choice, we would rather the model to show most of the
variance to be explained by the observations x, but unfortunately regularisation
does not take this into account.

In this section, we present two candidates for measuring the multi-labelness
of data: an analytical model with regularisation, and we introduce a split model
that models each label using the observations before modelling with respect to
the other labels.

3.1 Regularisation of analytical models

Analytical models (as opposed to predictive models) are fit to data to provide
insight into the associations between variables. A common form of analytical
model for a binary response is logistic regression.

log

(
pi

1− pi

)
= βix (3)

where x is the vector of observations, βi is the vector of model coefficients and pi
is the probability of the response yi being positive or negative. Once the model is
fit to data, βi is observed to determine which of the elements of x are associated
to pi.
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A multi-label analytical model allows us to identify which of the elements of
x and labels y−i are associated to label yi. Using logistic regression, we have:

log

(
pi

1− pi

)
= βxix+ βyiy−i (4)

where βxi are the regression coefficients associated to the observations variables,
and βyi are the coefficients associated to the set of labels excluding the ith label.

Fitting the model to data consists of identifying the coefficients βxi and βyi

that maximise the likelihood function, or equivalently minimise the negative
log likelihood function. Regularisation is used to avoid overfitting the model,
by penalising the likelihood, leading to lower model variance, but introducing a
bias. Common forms of regularisation are l1 and l2 norm regularisation, giving
the loss functions:

l1 : λ‖[βxi βyi]‖1 − L([βxi βyi]; [x y−i], yi)

l2 : λ‖[βxi βyi]‖2 − L([βxi βyi]; [x y−i], yi)

l1 + l2 : λ(‖[βxi βyi]‖1 + ‖[βxi βyi]‖2)− L([βxi βyi]; [x y−i], yi)

where L([βxi βyi]; [x y−i], yi) is the log likelihood of the logistic regression model
of label yi with coefficients βxi and βyi, ‖β‖1 is the l1 norm of β, ‖β‖2 is the l2
norm, and λ is estimated using cross validation.

The l2 norm induces bias in the coefficients β in an attempt to obtain a
more robust set of coefficients that generalise to new data, but in the process,
usually provides relationships between all variables. The l1 norm induces bias
in the coefficients to act as a variable selector, but is usually highly unstable
when faced with multicollinearity. The combined l1 + l2 norm usually provides
robustness and variable selection [9].

Multicollinearity in the data means that the l1 regularisation might lead to
different non-zero coefficients for a new sample. As a simple example, consider
the case where all labels yi are functions of x, independent of the other yj .
Ideally, l1 regularisation should provide zero to all coefficients of βyi, but the
multicollinearity might lead to non-zero coefficient in βyi in place of some from
βxi.

3.2 Split Analytical Model

To measure the multi-labelness of data, a multi-label analytical model is used
(such as logistic regression), and the label coefficients of the model are observed.
We have stated that multi-label analytical models might provide superfluous
inter-label relationships due to the multicollinearity of the multi-label data.

Rather than treating each observation xj and labels y−ij equally where j is
the observation id, we propose that the model should first fit the variables xj

and then fit any residual variance to y−ij .

logit (pij) = βxixj + εij

εij = βyiy−ij + ηij
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where pij is the probability of label i given xj , εij is the residual of the ith label
and jth observation after fitting the model using only the observations, and ηij
is the residual from fitting the labels to the residual from the previous model.
This will force the multi-label model to not provide inter-label dependencies
that could be explained with xj , due to the multicollinearity of the variables.
We hypothesise that this split analytical model will provide a lower number
of non-zero label coefficients βyi, since the model is forced to find associations
between yi and x first, hence providing a better measurement of multi-labelness.

The model residual cannot be measured from logistic regression in the model
space, since the true label value of 0 or 1 is mapped to −∞ or +∞. Therefore
we keep the model in the logistic space and instead supply an model offset zij
for each label i and observation j.

logit (pij) = zij + βyiy−ij + ηij where zij = βxixj

To generalise the model, we also add regularisation to each stage of the model,
providing us with the fitting process:

Stage 1: arg min
βx

(λx‖βx‖m − L(βx|x, yi)) (5)

Stage 2: arg min
βy

(
λy‖βy‖n − L(βy|y−i, yi, zi)

)
where m and n are either 1 or 2 (for l1 or l2 regularisation), L(βy|y−i, yi, zi) is
the logistic regression log likelihood function using offset zi for each observation,
and λx and λy are estimated using cross validation.

4 Analysis of Full and Split Analytical Models

A full and split analytical model were presented in the previous section. In
this section we devise an experiment to deduce where each form of model is
most effective at measuring multi-labelness (identifying the number of inter-label
relationships) of multi-label data, with minimum superfluous relationships.

4.1 Measuring multi-labelness

Recall that multi-labelness is the number of inter-label relationships. The usual
procedure for determining if an observation variable is associated to the response
variable is to examine the standard error of the fitted regression coefficient, and
assess if it provides evidence against the true coefficient being zero. Unfortu-
nately, regularisation induces bias into the regression coefficient estimates β,
therefore the coefficient standard error is not as useful3. To determine signifi-
cance we must compute the confidence interval for each coefficient. But, reporting

3 Section 6 of https://cran.r-project.org/web/packages/penalized/vignettes/

penalized.pdf
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the interval of each coefficient would ignore any association between coefficients
(treating them as independent), and be misleading.

We want to determine which form of regularisation provides an analytical
model with a good fit to the data, and showing the least dependence between
each label to the regression label. We are not concerned with the association
between the observations x and the response label; our goal is to determine
which form of regularisation provides the least label interdependence.

We are also not concerned with which labels are associated to the response.
We stated that we cannot show causality, and that multicollinearity exists, so
are unable to determine the true associations. The best we can do is to assess
which form of regression provides the least inter-dependence between labels,
while providing a good fit. Therefore, we measure multi-labelness as the number
of non-zero label coefficients of the analytical model. The lower the number, the
fewer relationships have been established between labels (meaning that more
association has been found to the observations x) leading to lower complexity
models.

4.2 Generating multi-label data

To assess the measurement of multi-labelness of different data structures from
a given analytical model, we need to know the true underlying model form that
generated the data. Unfortunately, we do not know the underlying model that
was used to generate existing real multi-label data sets, therefore, if using them,
we will not be able to determine what about the data is effecting the fit.

Therefore, we are required to simulate multi-label data using strategically de-
signed multi-label data models, where the models exhibit the characteristics that
we want to test, but remain simple in order to reduce the chance of other effects
being introduced. We present ten multi-label data models, all using three obser-
vation variables and three label variables. Each data model consists of three ob-
servation variables x1, x2, x3 ∈ [−1, 1] which are independent, and all Bernoulli,
with p = 0.5, and three response labels y1, y2, y3 ∈ [−1, 1]. The models differ
in the dependence of the response labels, and use the Model Factor a associ-
ated to the likelihood of the model (larger a leads to data that provides higher
likelihood). The ten models are:

OneXOneY logit (yi) = axi∀i. All yi depend on only one xi. A multi-label
model should find no interdependence between the labels. The non-zero label
coefficient count should be 0.

ManyXOneY logit (yi) = ax1/3 +ax2/3 +ax3/3∀i. All yi depend on every xi.
A multi-label model should find no interdependence between the labels. The
non-zero label coefficient count should be 0.

OneXChainY logit (y1) = ax1, logit (y2) = ay1, logit (y3) = ay2. The first label
y1 depends on one observation variable x1, the second label depends on the
first and the third depends on the second. The non-zero label coefficient
count should be 2.
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ManyXChainY logit (y1) = ax1/3+ax2/3+ax3/3, logit (y2) = ay1, logit (y3) =
ay2. The same as OneXChainY, but the first label depends on all observed
variables xi. The non-zero label coefficient count should be 2.

OneXPartitionY logit (y1) = ax1, logit (y2) = ay1, logit (y3) = ax1 The first
and third labels depend on an observed variable x1 and the second label
depends on the first label. The non-zero label coefficient count should be 1.

ManyXPartitionY logit (y1) = ax1/3+ax2/3+ax3/3, logit (y2) = ay1, logit (y3) =
ax1/3+ax2/3+ax3/3. The same as OneXPartitionY, but the first and third
labels depend on all observed variables xi. The non-zero label coefficient
count should be 1.

OneXTreeY logit (y1) = ax1, logit (y2) = ay1, logit (y3) = ay1. The first label
depends on an observed variable, the second and third labels depend on the
first label. The non-zero label coefficient count should be 2.

ManyXTreeY logit (y1) = ax1/3+ax2/3+ax3/3, logit (y2) = ay1, logit (y3) =
ay1. The same as OneXTreeY, but the first label depends on all observed
variables. The non-zero label coefficient count should be 2.

OneXFanY logit (y1) = ax1, logit (y2) = ay1, logit (y3) = ay1/2 + ay2/2. The
first label depends on an observed variable, the second label depend on the
first label, and the third label depends on the second and first labels. The
non-zero label coefficient count should be 3.

ManyXFanY logit (y1) = ax1/3 + ax2/3 + ax3/3, logit (y2) = ay1, logit (y3) =
ay1/2 + ay2/2. The same as OneXFanY, but the first label depends on all
observed variables.

The dependencies of each model are shown in Figure 1. These 10 data models
contain a set of simple relationships that we would expect to find in multi-label
data. We will generate data using these known models and examine how the
analytical models measure their multi-labelness.

For this investigation, we generated 100 training and 100 testing data sets
for each of the above ten data types using Model Factors a = 0.1, 0.5, 1 and
2, providing 4000 training and 4000 testing sets. The data was generated by
sampling from the models using the model probabilities. We can see that as a
increases, the probability of each label is likely to increase in magnitude, so the
resulting data sample will have less variance.

In the following sections we will fit this generated data using logistic regres-
sion with regularisation, and examine how the regularisation effects the coeffi-
cients of the model.

4.3 Investigation: Full model with l1 and l2 regularisation

To begin our investigation, we examine the effect of l1 (lasso regularisation), l2
(ridge regularisation) and a combination of l1 and l2 (elastic net regularisation)
regularisation.

To examine how well each analytical model is able to fit the data from each
data model, we fitted the analytical model to the generated data and counted
the number of non-zero coefficients associated to labels, from the fit. Since there
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x1 x2 x3

y1 y2 y3

OneXOneY

x1 x2 x3

y1 y2 y3

ManyXOneY

x1 x2 x3

y1 y2 y3

OneXChainY

x1 x2 x3

y1 y2 y3

ManyXChainY

x1 x2 x3

y1 y2 y3

OneXPartitionY

x1 x2 x3

y1 y2 y3

ManyXPartitionY

x1 x2 x3

y1 y2 y3

OneXTreeY

x1 x2 x3

y1 y2 y3

ManyXTreeY

x1 x2 x3

y1 y2 y3

OneXFanY

x1 x2 x3

y1 y2 y3

ManyXFanY

Fig. 1. Dependencies of the 10 data models used for simulation.

are three labels in each data set, each can have association to zero, one or two
other labels, providing a range of zero to six non-zero coefficients for the three
fitted labels. The results are shown in Figure 2.

Figure 2 provides one plot for each data model type. Each plot contains sets of
box plots for model factors 0.1, 0.5, 1 and 2, and each set of box plots contains
three box plots of the non-zero label coefficient count for the three forms of
regularisation over the 100 replications. As expected, l2 regularisation provides
all six of the label coefficients as non-zero. We can also see that l1 provides either
an equivalent or fewer number of non-zero label coefficients compared to l1 + l2.
But we also find that each of these forms of regularisation provide non-zero
label coefficients for the OneXOneY and ManyXOneY data, in which there is no
interdependence on the labels. Therefore, using l1, l2 or a mixture will suggest
that label dependencies exist, when in fact they do not.

4.4 Investigation: Split model with l1 and l2 regularisation

In this section, we will examine the effect of the two stage analytical model from
Section 3.2 to try to force the dependence of yi towards the observations x, and
then fit the remaining label variance to the labels y−i. The two stages of the
split model from equation 5 require two norms to be set. We used the data from
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Section 4.2 to obtain results when each of m and n are 1 or 2. The results are
shown in Figures 3, 4 and 5.

Figure 3 provides box plots for the number of non-zero label coefficients
using l2 regularisation for the x variables and a selection of l2, l1 and l1 + l2
regularisation for the labels yi. We find again that l2 always provides 6 non-zero
coefficients, and that l1 provides either equivalent or fewer labels than l1+ l2. We
also find that the median non-zero label coefficient count is 0 for l1 and l1 + l2
regularisation for the OneXOneY and ManyXOneY data structures, showing
that the split regularisation has had an impact in removing non-existent label
inter-dependencies.

Figures 4 and 5 provide the non-zero label coefficient count when using the
l1 + l2 regularisation for x and l1 regularisation for x respectively. These results
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Fig. 4. The distribution of the number of non-zero label coefficients for split regulari-
sation (l + 1 + l2 for observed variables and l1, l1 + l2 and l2 for labels), on each data
type, using Model Factors 0.1, 0.5, 1, and 2.

lead us to the same conclusion, that l1 regularisation for the labels leads to lower
non-zero label coefficient counts in the analytical models.

4.5 Comparing Full and Split regression

We have provided the non-zero label coefficient count and prediction error results
from using l1 regularisation on all coefficients (Full l1, from Section 4.3) and the
split model results using l1, l1+l2 and l2 regularisation for x and l1 regularisation
for y−i in Figures 6 and 7 (comparing the best forms of regularisation from the
previous results).

Figure 6 shows that the split models provide a lower distribution (shifted to-
wards zero) of non-zero label coefficients compared to the Full model for OneX-
OneY, ManyXManyY, and for OneXPartitionY, ManyXPartitionY when the
Model Factor (a) is high. For all other data models, the Full l1 model provides
an equivalent or fewer non-zero label coefficients.

The accuracy results in Figure 7 provides the mean absolute error between
the predicted label probability and the true label probability (from the model).
We find that each analytical model provides equivalent accuracy, but there are
a few occurrences (from the Fan, Tree and Chain data structures) of the Full l1
model providing lower error when the Model factor (a) is 1 or 2.

The mean number of non-zero label coefficients for each regularisation method
on each data type in Figure 6 are shown in Table 1. We find that the split reg-
ularisation provided significantly fewer non-zero label coefficients for the data
where there was no inter-label dependencies (OneXOneY and ManyXOneY) and
the partitioned labels (OneXPartY and ManyXPartY), but provided more non-
zero coefficients for the Chain, Tree and Fan data. This suggests that the Split
models are useful when no label relationships exists, otherwise the Full model
should be used for measuring multi-labelness.
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Fig. 5. The distribution of the number of non-zero label coefficients for split regular-
isation (l1 for observed variables and l1, l1 + l2 and l2 for labels), on each data type,
using Model Factors 0.1, 0.5, 1, and 2.

5 Full and Split analytical models on real data

In this section, we examine the effect of regularisation on the non-zero label
coefficient proportion from five commonly used multi-label data sets. We assume
that there is dependence amongst the labels in each of the data sets, due to their
use in multi-label classification research.

We use the Emotions, Stare, Scene, Slashdot, and Enron multi-label data
sets4. A 50/50 train/test split is used, and the regularisation parameters λ, λx
and λy were fit using 10 fold cross validation on the training data. The mod-
els are then used to examine the effect of regularisation and the classification
accuracy using the testing set. The mean non-zero label coefficient proportion
for each label is reported, representing the detected number of relationships be-
tween labels. The accuracy is measured in terms of mean Hamming similarity
(proportion of correctly predicted labels), Jaccard similarity (ratio of true posi-
tive count and 1 - true negative count) and Exact similarity (score 1 if all labels
are correct, otherwise score 0) of the predicted label state compared to the true
label state, computed over the set of test observations. Note that each model
is a function of x and y−i, therefore, we have provided two accuracy scores for
each regularisation method for each metric, providing an evaluation interval. The
lower score is computed using label estimates ŷ−i from an independent model
(predicting each label based on the observations x alone, not using other label
information). The upper score is computed using the true label values y−i. The
results are presented in Table 2.

4 All available from http://mulan.sourceforge.net/datasets-mlc.html, https:

//sourceforge.net/projects/meka/files/Datasets/ (Slashdot), and http://

cecas.clemson.edu/~ahoover/stare/ (Stare).
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Fig. 6. The distribution of the number of non-zero label coefficients for split regularisa-
tion (l1, l1 + l2 and l2 for observed variables and l1 for labels) and full l1 regularisation,
on each data type, using Model Factors 0.1, 0.5, 1, and 2.

5.1 Label interdependence

We first examine the non-zero label coefficient proportion in Table 2 to determine
which form of analytical model provides the most appropriate measure of multi-
labelness. We find that using Full l1 regularisation provides the lowest proportion
over all but the Emotions data set, where it is close to the minimum. This is
consistent with the simulated results, assuming that each of the multi-label data
sets have no independent sets of labels. Calculating the maximum likelihood
score for each data set also reveals that they all are most similar to the generated
data where a = 0.1, further reinforcing the results from the generated data.

5.2 Effect of label-interdependence reduction on accuracy

We next assess the accuracy of the model to determine if the smaller number
of label relationships is due to the model making better use of the observa-
tions x (meaning that the number of non-zero label coefficients is smaller, but
the accuracy is not lower), or it is simply due to a poorer use of the label set
y−i (meaning that the number of non-zero label coefficients is smaller, and the
accuracy is lower).

The accuracy of each regularised analytical model is provided as two scores;
the first when using estimates of the label state (from an independent model),
and the second when using the true labels. The second score provides us with
a measure of the accuracy of the analytical model, the first score gives us an
indication of the effect when using computed label relationships.

Most of the split models provide significantly greater upper scores. Exam-
ining the lower scores, we find that many of the Split score are significantly
worse than the Full l1 score. This suggests that the Full l1 provides a good
base set of label relationships and that further relationships can be found using
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Fig. 7. The distribution of mean absolute error of the label probability and predicted
probability for split regularisation (l1, l1 + l2 and l2 for observed variables and l1 for
labels) and full l1 regularisation, on each data type, using Model Factors 0.1, 0.5, 1,
and 2.

Split regularisation, but they are only useful when obtaining accurate label esti-
mates. These results align with those from the simulation; where the labels are
associated, Full l1 provided the least number of non-zero label coefficients with
equivalent accuracy to the other forms of regularisation.

These experiments conducted on both the generated and real data lead to
the same conclusion, that a split analytical model provides a better measure
of multi-labelness when the labels are all independent, or when they can be
partitioned into models with high likelihood. Otherwise, using the full model
with l1 regularisation provides a better measure of multi-labelness. Analysing
the results has shown that the regularisation has a major impact for the split
model; it is shared for the observations and labels in the full model, but not for
the split model. We will investigate this impact in future work.

6 Conclusion

Examining the relationships between labels in multi-label data before construct-
ing a multi-label classifier, provides us with insight as to how to design the clas-
sifier. Measuring the multi-labelness of the data (the number of relationships
between labels) allows us to determine if a multi-label classifier is appropriate
for the data.

Multi-labelness of data cannot simply be measured using the correlation be-
tween labels, since the label relationships are confounded by the data observa-
tions. Fitting an analytical model to a label with respect to the other labels and
observations can also present false label relationships due to multicollinearity
between the labels and observations.

We investigated the effect of using a full model and proposed a new split
analytical model to minimise the number of spurious relationships and measure
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Table 1. The mean number of non-zero label coefficients for each regularisation meth-
ods and each data type. A star (*) represents a significant difference to the Full l1
regularisation using a paired Wilcoxon test.

Reg OneXOneY ManyXOneY OneXChainY ManyXChainYOneXPartY

Full l1 1.55 1.84 4.24 4.31 2.98

Split l2,l1 0.47* 0.82* 4.59* 4.55* 2.81*
Split l1 + l2,l1 0.62* 0.80* 4.53* 4.51* 2.86*
Split l1,l1 0.59* 0.76* 4.55* 4.51* 2.77*

Reg ManyXPartY OneXTreeY ManyXTreeY OneXFanY ManyXFanY

Full l1 3.01 4.26 4.06 4.74 4.47

Split l2, l1 2.66* 4.62* 4.51* 4.78 4.67*
Split l1 + l2,l1 2.69* 4.62* 4.53* 4.84* 4.74*
Split l1,l1 2.72* 4.62* 4.42* 4.83 4.67*

the multi-labelness of data. We examined l1, l2, and combined l1 and l2 regular-
isation with each of the full and split models. It was found that split analytical
models using regularisation have a greater likelihood of detecting independence
of labels. But if labels are not independent from each other, a full model using l1
regularisation provides the fewest dependencies between labels making it more
suitable for measuring the multi-labelness of data.
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Table 2. Measurement of Hamming, Jaccard and Exact accuracy, and the average
number of non-zero label coefficients for five commonly used multi-label data sets.
Each cell contains the score when using label estimates ŷi for prediction, and the true
labels yi for prediction. An asterisk (*) shows a significant difference of each Split
method compared to Full l1.

Accuracy Non-zero

Hamming Jaccard Exact Coefficients

Emotions (5 labels)
Full l2 0.765, 0.822 0.508, 0.560 0.251, 0.309 1
Full l1+l2 0.762, 0.828 0.533, 0.598 0.242, 0.358 0.866
Full l1 0.746, 0.835 0.527, 0.622 0.222, 0.373 0.832

Split l1,l1 0.764*, 0.842 0.551*, 0.611 0.248, 0.349 0.8
Split l2,l1 0.748, 0.834 0.548*, 0.600 0.227, 0.344 0.832
Split l1+l2,l1 0.757, 0.838 0.551*, 0.608 0.239, 0.358 0.832

Stare (12 labels)
Full l2 0.920, 0.951 0.539, 0.596 0.410, 0.537 1
Full l1+l2 0.907, 0.947 0.509, 0.577 0.364, 0.520 0.538
Full l1 0.896, 0.945 0.495, 0.600 0.335, 0.531 0.461

Split l1,l1 0.864*, 0.954* 0.488*, 0.679* 0.335, 0.618* 0.872
Split l2,l1 0.860, 0.955* 0.471*, 0.676* 0.324, 0.624* 0.891
Split l1+l2,l1 0.874, 0.956* 0.497*, 0.684* 0.341, 0.635* 0.872

Scene (5 labels)
Full l2 0.894, 0.947 0.684, 0.789 0.579, 0.740 1
Full l1+l2 0.834, 0.971 0.647, 0.904 0.528, 0.869 1
Full l1 0.774, 0.976 0.616, 0.927 0.522, 0.903 1

Split l1,l1 0.749*, 0.975 0.613*, 0.926 0.523, 0.892* 1
Split l2,l1 0.746*, 0.976 0.611*, 0.928 0.523, 0.899 1
Split l1+l2,l1 0.745*, 0.976 0.613*, 0.927 0.525, 0.897 1

Slashdot (18 labels)
Full l2 0.956, 0.957 0.407, 0.403 0.367, 0.369 1
Full l1+l2 0.947, 0.963 0.490, 0.523 0.397, 0.472 0.462
Full l1 0.904, 0.969 0.463, 0.623 0.331, 0.570 0.424

Split l1,l1 0.857*, 0.976* 0.454, 0.736* 0.323*, 0.676* 0.886
Split l2,l1 0.907, 0.972* 0.483*, 0.652* 0.333, 0.612* 0.801
Split l1+l2,l1 0.835*, 0.976* 0.443*, 0.741* 0.324, 0.682* 0.848

Enron (47 labels)
Full l2 0.945, 0.948 0.200, 0.229 0.001, 0.001 1
Full l1+l2 0.937, 0.957 0.318, 0.483 0.117, 0.195 0.210
Full l1 0.929, 0.957 0.275, 0.482 0.013, 0.198 0.153

Split l1,l1 0.915*, 0.956 0.243*, 0.491 0.004, 0.200 0.315
Split l2,l1 0.898*, 0.963* 0.251*, 0.590* 0.001*, 0.289* 0.326
Split l1+l2,l1 0.917*, 0.957 0.247*, 0.502* 0.003*, 0.203 0.318


