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Abstract. Stochastic elements in reinforcement learning (RL) have
shown promise to improve exploration and handling of uncertainty, such
as the utilization of stochastic weights in NoisyNets and stochastic poli-
cies in the maximum entropy RL frameworks. Yet effective and general
approaches to include such elements in actor-critic models are still lacking.
Inspired by the aforementioned techniques, we propose an effective way to
inject randomness into actor-critic models to improve general exploratory
behavior and reflect environment uncertainty. Specifically, randomness
is added at the level of intermediate activations that feed into both pol-
icy and value functions to achieve better correlated and more complex
perturbations. The proposed framework also features flexibility and sim-
plicity, which allows straightforward adaptation to a variety of tasks. We
test several actor-critic models enhanced with stochastic activations and
demonstrate their effectiveness in a wide range of Atari 2600 games, a
continuous control problem and a car racing task. Lastly, in a qualitative
analysis, we present evidence of the proposed model adapting the noise
in the policy and value functions to reflect uncertainty and ambiguity in
the environment.

Keywords: Stochastic Neural Networks · Actor Critic Methods · Deep
Reinforcement Learning

1 Introduction

Deep reinforcement learning (DRL)—that is, using deep neural networks (DNNs)
in reinforcement learning—has allowed tremendous progress in areas from game
playing [25] to continuous control [20]. These DNNs generally serve to approximate
value functions [38], such as in deep Q-network (DQN) and its variants [25], or
to represent policies [38] such as in policy-gradient methods [35]. Another family
of Deep RL (DRL) methods is the hybrid actor-critic approach, which employs
DNNs to represent value functions as well as policies [24, 43] and has achieved
state-of-the-art performances on highly complex RL problems.

Uncertainties play a crucial role in RL, including probabilistic state transitions,
noisy reward functions, non-determinisitic action outcomes [11], and exploration
of infrequently tested actions. Earlier DRL works addressing uncertainty have
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Fig. 1: The baseline A3C-LSTM has deterministic latent units and weights
only (blue). NoisyNet has stochastic weights (red) over policy and value networks
independently. Our proposed methods have stochastic units shared by the two
pathway with different configurations:, SA3C has half deterministic and half
stochastic units in the intermediate layer; FSA3C has only stochastic units;
HPA3C is the same as SA3C but regularized with hierarchical prior from
preceding time step during training.

proposed the use of stochastic neural networks (SNNs). SNNs such as Bayesian
Neural Networks (BNNs) and NoisyNets [6, 10, 32] improve exploration through
injecting parametric noise. Nevertheless, parametric noise has not been equally
successful in actor-critic methods ([10], [32]), which are of particular interest
because they have performed at a state-of-the-art level in many environments,
including Atari games [5] and continuous robotics control [43]. Similar to other
model-free approaches, DRL-based actor-critic methods are also highly sensitive
with respect to model architecture and other hyperparameter selections, it is
therefore important yet non-trivial to discover means to strengthen actor-critic
methods with stochastic modeling components.

We propose to directly sample intermediate latent representations shared
by both the policy and value network to propagate more complex, structured
perturbations, contrasting parametric noise where the weights for the two networks
are jittered independently. Particularly, we contribute to the development of a
family of stochastic activation A3C models that effectively incorporate stochastic
activations on top of LSTM-Asynchronous Advantage Actor Critic [24, A3C-
LSTM], a framework representing the current state-of-the-art in many RL tasks.

An important subsequent contribution of this work is a thorough investiga-
tion of the empirical performance of stochastic activation A3C on 7 Atari 2600
benchmark games with stochastic skip frames, where our models generally out-
perform both the SOTA baseline A3C-LSTM and its NoisyNet variant with
stochastic weights. Further examination over these experiments demonstrates
the decrease of variance over approximated values from multiple samples of
stochastic activations during the course of training, indicating a reduction of
model uncertainty. Empirical analysis on the converged value and policy networks
also show signs of our proposed models reflecting the intrinsic stochasticity of the
environment. We then provide a mathematical link between stochastic activations
and a special case of stochastic weights yet highlight their essential practical
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discrepancies. As an additional contribution, we advance beyond the on-policy
A3C-LSTM and incorporate stochastic activations to methods with experience
replay and continuous action spaces, namely deep deterministic policy gradients
(DDPG) [20] and actor critic with experience replay (ACER) [43]. Pseudocode
and full experimental details are in the Appendix; code and video demos are in
the Supplementary Materials.

The rest of this paper is organized as follows: first, we discuss related works and
preliminaries. Then, we motivate and introduce stochastic activation A3C and
our primary model, Stochastic A3C (SA3C), along with two important variants
to underline the flexibility of this technique. Next, we present our experimental
setup and results, evaluating the overall performance of stochastic units against
baselines and stochastic weights. Finally, provide practical advice such as model
and hyperparameter selections along with algorithm limitations.

2 Related Work

The treatment of uncertainty has been a long-standing challenge in RL and
several lines of research have studied how to address this challenge. Our work is
most connected to two general directions, incorporating stochastic components
during (1) exploration and (2) inference process.

Epistemic uncertainty, i.e. model uncertainty, reduces as the agents gather
more information via exploration. Many exploration mechanisms employ ran-
domized actions instead of always using the best current model (exploitation) to
gather more information. These mechanisms include Bayesian methods such as
Thompson sampling [13], action-dithering schemes such as ε-greedy [38], value
randomization such as randomized least-squares value iteration (RLSVI) or with
Gaussian Processes [19, 30], et cetera. Many of these mechanisms have also been
adapted to the context of DRL, such as Thompson sampling via BNNs [6] and
deep value randomization [29].

One approach that was developed in the related field of stochastic optimal
control (SOC) uses inference techniques for finding the best actions under un-
certain dynamics. In order to do so, the return (or related RL objectives) is
defined as a factor in a graphical model and probabilistic inference is applied to
determine a sequence of actions optimizing this objective [41]. These probabilistic
frameworks have inspired DRL algorithms, such as distributive DQN [4] and deep
probabilistic inference for learning control (PILCO) [12]. Recently, DRL models
built upon the maximum entropy framework [45] by augmenting the standard RL
objective with an entropy maximization term to achieve probabilistic inference
have gained much attention, thanks to the potential of improving exploration
and generalization in the face of uncertainty [14, 28]. These works also shed light
on our proposed framework in retaining a distributive perspective over values
and allowing stochastic policies.

The partially-observable setting explicitly addresses uncertainty about the
state that the agent is in. A common strategy compresses the unbounded history
of observations into belief states, and then subseuqently applies RL to the belief
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states [26]. Analytical belief state updates require knowledge of the observation
model and transition model – even then is exponential in the number of state
variables [26]. DRL-based algorithms that incorporate recurrent modules [24]
implicitly maintain analogous internal states. However, these internal states are
usually deterministic; in contrast, our model samples its internal states from
Gaussian distributions, more similar to belief state approximations in continuous
state systems [33].

Our proposed technique fills an important gap in DRL-based actor-critic
methods such as A3C-LSTM, where there has been lacking a general yet effective
way to include stochastic elements. We apply high-level insights from Bayesian
deep learning [17], in particular the use of SNNs, to RL. Applications of SNNs in
ML have a long history, [27] [39] to list a few. In the regime of RL, SNNs have
also shown promising results. For instance, recently, [10] and [32] concurrently
proposed to add independent parametric noises to the FC layers for better
exploration, resembling BNNs but without the convergence to a posterior. In
contrast, our model perturbs (part of) the intermediate activations which are
eventually shared by the actor and critic, allowing structured exploration via
better correlated randomness on both paths. Similar SNNs have been employed
in several hierarchical RL systems to embed complex skills in an abstract form for
higher level tasks [9]. [34] leverages a special case, the variational autoencoder [18],
to extract latent representations from raw observations for measuring similarities
between states. In these works, the SNNs are separately trained. In our work,
we directly alter part of the deterministic units within the baseline models to
become stochastic and train the model end-to-end. Finally, recent works propose
to measure model uncertainty using DNNs with a special type of stochastic units,
dropout units, in the context of e.g. better safety [11, 16].

3 Preliminaries

We consider the standard discrete time step, discounted RL setup. An agent at
time t observes ot, which is a function of its state st, and chooses an action at
guided by a policy πt. Its ultimate objective is to maximize the accumulative
expected return over time R = E(st,ot,at)∼πt

[rt], where rt is the reward at time t.
This section focuses on introducing the primary baseline algorithm used in our
work, batch A3C-LSTM. To demonstrate the generalizability of our proposed
method, we perform additional experiments using actor-critic methods with
off-policy replays and the descriptions of these models are introduced later in
Section 4.2.

Asynchronous advantage actor-critic (A3C) [24] is a model-free, on-policy
RL algorithm. Multiple agents are spawned to concurrently interact with the
environments with different random seeds and optimize a shared model that
approximates both the policy and value functions through asynchronous gradient
descent to trade-off bias and variance. A3C models can either be composed of
only Convolutional Neural Networks (CNNs) or with an additional recurrent
module, usually an LSTM cell. We choose the latter, for it is able to learn more
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Game Human∗ A3C† NN-A3C† A3C NN-A3C Stochastic Act.
Seaquest 28010 1744±0 943±41 13922±4920 894±313 29656±5317

BeamRider 5775 9214±608 11237±1582 9214±608 6117±1808 13779±3605
MsPacman 15693 2436±249 3401±761 4670±1864 4096±1351 5590±1521
Boxing 4.3 91±1 100±0 99.5±1.0 94±4.4 100±0.0
Breakout 31 496±56 347±27 588±180 570±252 621±194
Qbert 13455 18586±574 17896±1522 15333±2462 14352±1335 16045±556
Freeway 29.6 0±0 18±13 23.3±1.2 22.4±0.8 23.9±1.3

Table 1: Results with ∗ and † are cited from [25] and [10]. Due to stochastic
frame skipping in our setups which generally yield more difficult environments,
our results (last 3 columns) are not precisely comparable to †. Nonetheless we can
still clearly conclude the competitiveness of our baseline implementation. The
last column presents the results from the optimal stochastic activation models.

complex state representations to tackle e.g. partially observable environments
with longer time dependencies. Recently, batch A3C-CNN was developed for
faster training and efficient utilization of GPUs [1]. We also take advantage of
mini-batch training on A3C-LSTM for better stability and apply synchronous
descents [1], where backpropagation waits for all agents to finish their actions so
as to avoid stale gradients [8]. Some also refer to similar algorithms as A2C [42].

A3C-LSTM (Figure 1) consists of a CNN to extract features from raw ob-
servations, an LSTM cell to compress history, and a value and policy networks.
We denote the features extracted by the LSTM as ht=fLSTM(CNN(ot), ht−1).
In order to be consistent with models introduced later on, we further add two
sets of Fully-Connected (FC) layers on top of ht, obtaining their concatenation
[fFC1(ht), fFC2(ht)] as inputs to the value and policy networks. This structure
allows us to later make either or both of these pathways stochastic. The objective
for the value network is to estimate the state value Vt by regressing the estimated
tmax-step discounted returns with discount rate γ ∈ (0, 1) (Equation 1); the policy
network proposes a policy πt and is guided by advantage-based policy gradients
using the generalized advantage estimation Â (details see [36]), regularized by an
entropy term to encourage exploration (Equation 2).

Value estimation objectvie: LVt = Est,ot,at(Σ
tmax

t′=t γ
t′−trt′ − Vt)2, (1)

Policy gradient with entropy regularization: ∇θ log πt(Ât) + β∇H(πt). (2)

Finally, we also compare our proposed method with a sthochastic weight variant
of A3C-LSTM, NoisyNet A3C (NN-A3C, Figure 1). The construction mostly
follows [10] and more details are illustrated in the Appendix.

Our architecture and training protocol produce a state-of-the-art level A3C-
LSTM, which is an essential component in our work since we aim at developing a
technique that is highly competitive, even surpassing the performance of a very
powerful baseline. We compare the baseline A3C implementation replicated by
us with another mainstream version as well as human players in Table 1.
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4 Actor Critic Methods with Stochastic Activation

This section first illustrates how to integrate stochastic activations into A3C-
LSTM, arriving at the stochastic activation A3C family of models. We then
describe the primary stochastic activation A3C used in our work, along with
two additional variants. Finally, we extend the technique of stochastic units to
actor-critic methods with off-policy training (DDPG and ACER).

4.1 Stochastic Activation A3C

Inspired by the SNN design from [39] whose intermediate units are half determin-
istic and half stochastic in order to encode information of different uncertainty
levels, we craft an initial version of stochastic activation A3C in a similar manner,
termed stochastic A3C (SA3C). Following the output of the LSTM hidden state
ht, the next layer is split into a deterministic channel and a stochastic channel. The
deterministic channel kt=fdet(ht) is parameterized by a FC layer. The stochastic
units follow factored Gaussian distributions. The variance is, for now, set to a fixed
value and treated as a hyperparameter, but note that subsequent layers can learn
to rely on the deterministic or the stochastic units in any proportion to manage
the amount of noise in the value and policy functions. The mean µt=fmean(ht)
is also parameterized by a FC layer. The pseudocode for SA3C is in Algorithm 1.
Fully-Stochastic A3C (FSA3C) is an interesting control setup that replaces the
deterministic channel with a stochastic one and attains a fully-stochastic inter-
mediate representation. Hierarchical Prior stochastic activation A3C (HPA3C)
is inspired by BNNs that craft their priors to the model parameters in order
to achieve certain effects, such as inducing sparsity [21]. Analogously, HPA3C
adds a KL-divergence between the stochastic activation distribution and a prior
to the objective function. Specifically, the prior for the variance is fixed to a
value σ2, treated as a hyperparameter, and the prior for µt is derived from the
previous step stochastic latent sample.1 Our design is also similar in spirit to
latent forward modeling [40] where the history predicts and guides the future,
but in a more implicit form of prior regularization:

Derivation of µpt : zt−1∼N (µt−1, σ
2), µpt=f

p(zt−1),

Prior regularization: KL
[
N (µt, σ

2
t )
∥∥N (µpt , σ

2
]

= log
σ

σt
+
σ2
t+(µt − µpt )2

2(σ)2
−1

2
.

We found that a proper prior choice is critical — omitting either the prior on
the mean or the variance significantly deteriorates the model performance.The
pseudocode for HPA3C is in the Appendix.

Forward propagation through stochastic activation A3C is identical to A3C-
LSTM, except that the stochastic activations zt are sampled from N (µt, σt) and
then concatenated with the deterministic counterpart kt as the inputs for the
policy and value networks. Backpropagation via the stochastic units is done by
the reparametrization trick [18].

1All operations are element-wise because of the factored Gaussian assumption.
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Initialize network parameters θ;
Fix variance σ2;
for k = 0, 1, 2, · · · do

Clear gradients dθ ← 0;
Simulate under current policy πt−1 until tmax steps are obtained, where,
ht = fLSTM(CNN(ot), ht−1), µt = fmean(ht), kt = fd(ht),
zt ∼ N (µt, σ

2
t = σ2), Vt = fv(zt, kt), πt = fp(zt, kt), t = 1, · · · tmax ;

R =

{
0, if terminal
Vtmax+1, otherwise

;

for t = tmax, · · · 1 do
R← rt + γR;
At ← R− Vt;
Accumulate gradients from value loss: dθ ← dθ + λ

∂A2
t

∂θ
;

δt ← rt + γVt+1 − Vt;
Ât ← γτÂt−1 + δi;
Accumulate policy gradients with entropy regularization:
dθ ← dθ +∇ log πt(at)Ât + β∇H(πt);

end
end

Algorithm 1: SA3C

Lastly, it is worth noting that while our models employ Gaussian units thanks
to their flexibility and ease to train, the proposed framework can adopt other
stochastic units as well. We conduct preliminary experiments with dropout
stochastic units in the Appendix and leave further investigation along this
direction to future works.

4.2 DDPG and ACER

Deep Deterministic Policy Gradients (DDPG) [20] is an off-policy actor critic
method. It explores via injecting action space noise, commonly from the Ornstein-
Uhlenbeck process. We equip DDPG with parametric noise [32] (PG-DDPG)
or stochastic activation (SDDPG). We do not incorporate an LSTM module to
DDPG and its variants. The baseline algorithm thus follows exactly as in [20]
and its parametric noise version, PN-DDPG, exactly as in [32] but without
randomizing the convolutional layers. Unlike A3C-LSTM, DDPG keeps separate
encoders for actor and critic. We only use stochastic activations to the behavior
actor network and not to off-policy training.

Actor Critic with Experience Replay (ACER) [43] is a sample-efficient actor-
critic algorithm with a hybrid of on/off-policy gradients. We compare amongst
ACER and its variants with stochastic units or noisy layer. Augmenting ACER
with stochastic activation (SACER) follows the same protocol as augmenting
A3C-LSTM with stochastic activation and we also use stochastic activations for
off-policy training. As an additional comparison, we construct a NoisyNet version
of ACER, NN-ACER by similarly randomizing the value and policy networks as
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Fig. 2: Training curves over 3 runs (median); vertical: rewards; horizontal: itera-
tions. For Atari games, we plot the curves for the baseline and the best stochastic
activation model along with the interquartile range. For the rest, we compare
among the baseline, SA3C and then stochastic weights.

in NN-A3C. The pseudocode of our ACER and its stochastic variants are in the
Appendix.

5 Experimental Setup and Results

This section first introduces the environments used in our experiments. Extensive
ablation studies are done on the Atari games. We then discuss the empirical
advantages of stochastic activation A3C over its deterministic baseline and how
its design flexibility can adapt well to a variety of environments and tasks. Finally,
we present additional results generalizing SA3C to off-policy methods, namely
DDPG and ACER, on BipedalWalker2D and CarRacing respectively.

5.1 Environments

Our experiments are primarily done in an on-policy manner on 7 selected clas-
sic Atari 2600 games contained in the Arcade Learning Environment [5] and
interfaced via OpenAI Gym [7] to cover a diverse range of tasks and exploration
types [3]. Full descriptions of these games are in the Appendix. To avoid mem-
orization and impose more randomness, we use the stochastic frame-skipping:
each action is repeated for a number, uniformly sampled between 2 and 4, of
consecutive frames. Exploration type is categorized by the taxonomy from [3].
The stochasticity of Atari games originates from multiple sources, including
frame-skipping, partial observation of some environments, non-stationary policy
during training, approximation errors, et cetera. For preprocessing, we crop Atari
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Game A3C-LSTM SA3C NoisyNet Optimal Model
Best Avg. Best Avg. Best Avg. Best Avg.

Seaquest 13922 6785 28876 23411 849 1332 HPA3C 29656 24992
±4920 ±5050 ±4270 ±4783 ±313 ±367 ±5317 ±3356

BeamRider 9214 8723 9994 8966 6117 5838 FSA3C 13779 10551
±608 ±627 ±3717 ±1013 ±1808 ±287 ±3605 ±2341

MsPacman 4670 3973 4960 4743 4096 3705 FSA3C 5590 5382
±1864 ±543 ±1639 ±220 ±1351 ±297 ±1521 ±268

Boxing 100 99.7 100 99.9 94 11.6 HPA3C 100.0 99.6
±0.0 ±0.2 ±0.0 ±0.0 ±4.4 ±59.6 ±0.0 ±0.23

Breakout 588 560 621 556 570 551 HPA3C 596 569
±180 ±22 ±194 ±45 ±252 ±25 ±197 ±22

Qbert 15333 14732 15560 15365 14352 11231 HPA3C 16045 15365
±2462 ±482 ±184 ±150 ±1335 ±3348 ±556 ±150

Freeway 23.3 22.8 22.4 21.6 22.4 21.5 HPA3C 23.9 23.2
±1.2 ±0.7 ±1.1 ±0.5 ±0.8 ±0.6 ±1.3 ±0.5

Table 2: We report Atari results following the evaluation protocol in Sec 5.
SA3C outperforms the baselines most of the time. The last column displays the
results from the optimal stochastic activation variants for each game which can
further boost the testing scores.

games to display only the game playing region, subtract estimated mean and
divide standard deviation, and rescale to 80× 80.

DDPG models are tested on a continuous task, BipedalWalker2D, where a
robot needs to reach the end of a path within a time limit and positive reward is
given for moving forward, totaling ≥ 300 for reaching the end, while a negative
reward of −100 is given for falling. No preprocessing is done for this environment.
ACER models are tested with CarRacing, a simple driving simulator whose
observations consist of RGB top-view of a race car and a black bar containing
other driving information. We only receive the pixel-valued observations and also
discretize its action space. More details on the preprocessing of CarRacing is
provided in the Appendix.

5.2 Stochastic Activation A3C Results

Hyperparameters and Model Architecture For Atari, hyperparameters are tuned
on Seaquest A3C-LSTM and then transferred to other games. We inherit all
common hyperparameters from A3C-LSTM to stochastic activation A3Cs and
only tune the additional ones, namely σ2 for SA3C and FSA3C, HPA3C and
the KL term weight for HPA3C. In particular, we would like to emphasize
the coefficient for entropy regularization is tuned to perform optimally on the
baseline–a higher value in fact deteriorates its performance; in other words, any
performance gain via stochastic activations cannot be replaced by increasing
the entropy term. For other environments, hyperparameters are tuned on the
baseline and then transferred to stochastic weight/activation models.
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: 2 : 2 : 1 : 3 : 2 +fire: 5

Fig. 3: For SA3C, stochastic activations can result in stochastic policies. The
less ambiguous the environment is, the more certain the policies become (left to
right). Arrows indicate the direction of movement, followed by the number of
times this action being selected (out of 5 samples).

Most games share a common model architecture but we use a slightly slimmer
CNN for Boxing, Breakout and Freeway. Since HPA3C needs to learn σt, more
variance is introduced to the gradients and the resulting stochastic activations
require further normalization. After trial-and-error with several techniques such
as Batch [15] and Layer [2] Normalization, we pick the most effective option–
concatenated ReLU [37]. Full details are given in the Appendix.

Evaluation Protocol We report Atari results on A3C-LSTM, NN-A3C, SA3C and
the best performing stochastic activation A3C variant in Table 2 following the
protocol:

1. Train 3 independent runs—a standard DRL practice [31, 44].
2. For each run, validate the current model on a non-training random seed,

select the best (validated) one after training.
3. Test the selected model for each run on 10 other random seeds not included

in training or validation, obtaining µ1 ± σ1, µ2 ± σ2, µ3 ± σ3.
4. Report the best µi ± σi under the column “Best”.
5. Average across the 3 models, i.e. µ± σ over µ1, µ2, µ3, reported under “Avg.”.

The proceeding protocol not only showcases how good a policy the algorithm can
attain if optimized well but also indicates variances in performance due to policy
gradient training. We also plot the training curves composed of average validation
scores with the standard deviation bars for Seaquest, Boxing and Freeway in
Figure 2, other games in the Appendix.

Inference and Stochastic Policies Based on the protocol from [10], NoisyNet is
tested by setting the stochastic weights equal to the learned mean. For stochastic
activation A3Cs, there are multiple possibilities during evaluation time. One
is to only use the mean from the stochastic units, referred to as Maximum A
Posteriori (MAP)–borrowing the Bayesian terminology.
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DDPG SDDPG PN-DDPG ACER SACER NN-ACER
BipedalWalker 5900 3500 6300 CarRacing 891 900+ 859

Table 4: Compare various actor-critic baselines with their stochastic-
activation/weight variants, tested on BipedalWalker and CarRacing. We report
the median iteration of solving the environmen for BipedalWalker and the median
best score in 10K iteration for CarRacing, where 300+ and 900+ are considered
solved for each task respectively.

Seaquest SA3C FSA3C HPA3C
MAP 27695±9096 4387±171 25474±8067
1 27081±6817 5090±1099 24475±4765
5 28876±4270 4453±592 29656±5317
50 28341±9839 4794±523 28341±9839

Table 3: Compare evaluating using µ only
(MAP), using a single sampled stochastic ac-
tivation and averging over 5 or 50 stochastic
activation outcomes. Sampling and averaging 5
activations tend to be optimal.

Alternatively, we sample
the stochastic activations and
vote the majority decision,
leading to stochastic policies.
Figure 3 shows the decisions
out of 5 sampled policies for
selected states: when there
is no clear immediate goal,
e.g. no enemy around, deci-
sions tend to diverge, but oth-
erwise they agree. Videos of
Seaquest with deterministic
polices from A3C-LSTM versus stochastic policies from SA3C are included
in the Supplementary Materials. Table 3 compares different evaluation schemes
from Seaquest — for stochastic policies we attempt 1, 5, and 50 samples — and
5 samples give the optimal results for most models. If not mentioned otherwise,
all stochastic activation A3C results are obtained by voting among policies from
5 sampled activations.2

5.3 Actor-Critic Models with Experience Replay

We further integrate this technique to actor-critic methods with experience
replay, namely ACER and DDPG. Complete hyperparameter details are in the
Appendix. For DDPG, we plot the median training curves out of 3 independent
runs in Figure 2. We found that DDPG is much less stable in training comparing
with A3C-LSTM. Adding stochasticity to DDPG does not improve its training
stability, which remains an open question. Nonetheless, SDDPG tends to converge
significantly faster than DDPG and DDPG-PN, at iteration 4000, 5900 and 6300
respectively (Table 4). For ACER, we plot the median training curves out of
3 independent runs in 10K iterations in Figure 2. However, note that we stop
the training once the environment is solved, i.e. average validation score over 10
random runs ≥ 900 . Out of the 3 runs (with maximum 10K iterations), only
SACER manage to solve the environment. The median best scores attained by
ACER is 891 and NN-ACER 859 (Table 4).

2We use 1 sample for Freeway. As it only has 2 actions, voting would strongly
diminish policy stochasticity.
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Stochastic activations boost the performances of the baselines and outperform
parametric space noise. These results confirm the effectiveness of our proposed
method when coupled with experience replay.

5.4 Further Analyses of Stochastic Activations

We performed further analyses of stochastic activation networks to investigate
the mechanisms behind the observed performance increase. We first inspected the
value learning process of SA3C. These results are given below. We investigated
several other aspects, including the significance of a shared intermediate stochastic
learning, the policy learnign process, and a detailed comparison of to stochastic
weights. The results of these experiments are given in the appendix.

Motivated by recent works using dropout units to estimate uncertainty [11, 16],
we obtain and analyze uncertainty estimations by calculating the sample variance
of multiple approximated values over sampled stochastic activations. Concretely,
for SA3C models at different training stages, we sample stochastic activations 5
times for each time step, calculate the variances of those resulting values and
plot these in Figure 4 for the first 700 time steps, that is

ˆσv2=
1

N − 1

N∑
i=1

(
fV (kt, zt)i − f̄V

)2
, f̄V =

1

N

N∑
i=1

fV (kt, zt)i, N=5, t=1 · · · 700.

Time Step 100 200 300 400 500 600
0

0.0005

0.001

0.0015

0.002

Iter 100 Iter 2000 Iter 6000 Iter 75000 Iter 150000

Fig. 4: At different training iterations
for SA3C, we sample 5 Vts via stochas-
tic activations for t = 1..700, plot their
variances and observe the general trend
of variances descends over training.

The variances tend to go down
over training (Figure 4). This behav-
ior is reminiscent of (Bayesian) mod-
els employing distributions over the
weights, where these distributions re-
flect parametric uncertainty. Indeed,
there is a connection between stochas-
tic weights and activations that we will
discuss more later. Despite the fixed
variance of the noise in the stochastic
units, the value network is clearly capa-
ble of gradually adapting the variance
through learning. This can be achieved
by shifting focus from stochastic units
to deterministic units in downstream
computations.

At convergence time, the value network usually approximates with little
variance, reflecting low uncertainty, except for a surge period around step 340
(Figure 5). This in fact corresponds to a special event where different actions
can lead to varying amounts of rewards: the submarine has reached maximum
capacity of rescued divers and it can either shoot the upcoming enemy to gain
some points or surface to collect a large amount of rewards by releasing the
divers—eventually the submarine chooses the latter. Ambiguous situation can
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t=340

t=340

Fig. 5: A zoom-in of the variance plot at convergence (iter 150K). The variance
is generally low except for periods with high unpredictability. Around step 340,
the submarine has rescued divers and should surface, but could also shoot the
enemy. More details see Section 5.4.

increase the variance comparing to those with a clear target, comparing amongst
step 340, 600 and 160. Therefore, we argue that SA3C’s adaption to stochastic
activations is not merely reducing the influence of the stochastic units, but rather
carefully balancing between the deterministic and stochastic signals to implicitly
establish a distributional perspective over returns and values, a beneficial trait
for RL [23] and a proper reflection of the environment unpredictability.

6 Practical Advice and Algorithm Limitations

Stochastic activation is a general approach to improve A3C but not the panacea
to every environment and task. Fully observable environments, such as Breakout,
benefit less from stochastic activations. Environments with sparse rewards like
Freeway also receive a more limited performance boost. RL problems with sparse
rewards and/or more complex logic will require more specialized systems in
combination with stochastic units, such as curiosity driven exploration.

The flexibility of stochastic activation A3C allows effective application to
a diversity of tasks, but model selection can appear labor-demanding at first
glance. From our experiences, SA3C is the go-to model as an initial attempt; if
more aggressive exploration seems appropriate, FSA3C is a good candidate; if
forecasting the upcoming states is essential in solving the task or rewards are
sparse, HPA3C will likely perform better and more stable. One can thus always
easily customize the stochastic activation A3C to meet the need of the task.

7 Conclusion

We proposed a flexible and simple to implement technique to improve DRL-based
actor-critic methods by adding stochastic activations. The proposed method
outperforms existing state-of-the-art baselines on a variety of benchmarks. In
future work, we hope to integrate the proposed technique with curiosity-driven
exploration to address problems with sparse rewards and experiment with other
types of stochastic units such as binary units for feature level count-based
exploration [31].
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