
Fast and Parallelizable Ranking with Outliers
from Pairwise Comparisons

Sungjin Im �1 and Mahshid Montazer Qaem1

EECS, University of California, 5200 N Lake Rd, Merced, CA 95343, USA
{sim3,mmontazerqaem}@ucmerced.edu

Abstract. In this paper, we initiate the study of the problem of ordering
objects from their pairwise comparison results when allowed to discard up
to a certain number of objects as outliers. More specifically, we seek to find
an ordering under the popular Kendall tau distance measure, i.e., mini-
mizing the number of pairwise comparison results that are inconsistent
with the ordering, with some outliers removed. The presence of outliers
challenges the assumption that a global consistent ordering exists and
obscures the measure. This problem does not admit a polynomial time
algorithm unless NP ⊆ BPP, and therefore, we develop approximation
algorithms with provable guarantees for all inputs. Our algorithms have
running time and memory usage that are almost linear in the input size.
Further, they are readily adaptable to run on massively parallel platforms
such as MapReduce or Spark.

Keywords: Rank aggregation · outliers · approximation · distributed
algorithms.

1 Introduction

Ranking is a fundamental problem arising in various contexts, including web
pages ranking, machine learning, data analytics, and social choice. It is of par-
ticular importance to order n given objects by aggregating pairwise comparison
information which could be inconsistent. For example, if we are given A ≺ B
(meaning that B is superior to A) and B ≺ C, it would be natural to deduce
a complete ordering, A ≺ B ≺ C. However, there exists no complete order-
ing creating no inconsistencies, if another pairwise comparison result C ≺ A
is considered together. As a complete ordering/ranking is sought from partial
orderings, this type of problems is called rank aggregation and has been studied
extensively, largely in two settings: (i) to find a true ordering (as accurately
as possible) that is assumed to exist when some inconsistencies are generated
according to a certain distribution; and (ii) to find a ranking that is the closest
to an arbitrarily given set of the partial orderings for a certain objective, with no
stochastic assumptions.

This paper revisits a central rank aggregation problem in the second domain,
with a new angle.



2 S. Im and M. Montazer Qaem

The Minimum Feedback Arc Set Tournament Problem (FAST). The input is a
tournament.1 The goal is to delete the minimum number of edges in order to
make the resulting graph acyclic. This is equivalent to finding a linear ordering
of the vertices to incur the fewest ’backward’ edges.

The FAST problem is well-studied: it does not admit a polynomial time
algorithm unless NP ⊆ BPP [3] and there are several constant approximations
known for the problem [3,18,11]. We note that this is a special case of the more
general problem (Minimum Feedback Arc Set; FAS for short) where the input
graph is not necessarily complete.

1.1 Necessity of Another Measure for Inconsistencies

The FAST problem measures the quality of an ordering by the number of pairs
that are inconsistent with the ordering; this measure was proposed by Kemeny [17]
and is also known as the Kendall tau distance. Unfortunately, this measure fails to
capture the ‘locality’ of inconsistencies, namely whether or not the inconsistencies
are concentrated around a small number of objects. To see this, consider the two
instances in Figures 1.

Fig. 1: The left graph consists of n
3 disjoint triangles (the rest of the arcs (vi, vj)

for all i < j are omitted). In the right graph, v1, v2, · · · , vn−1 has an ordering
with no inconsistencies among them and vn is a successor of other odd-indexed
vertices while being a predecessor of even-indexed vertices.

It is easy to see no matter how we order the vertices in the left instance, we
end up with having at least n/3 pairs that are inconsistent with the ordering, one
from each triangle. Likewise, the number of inconsistent pairs in the right instance
is at least (n− 1)/2 in any ordering, one from each triangle {vn, v2i−1, v2i}. Since
the ordering, v1, v2, · · · , vn, creates O(n) inconsistent pairs in both examples, the
optimal objective is Θ(n) for both. However, the two instances have inconsistencies
of very different natures. In the first graph, the inconsistent pairs are scattered
all over the graph. In contrast, in the second graph, the inconsistent pairs are
concentrated on the single vertex vn – the second input graph becomes acyclic
when vn is removed.

The above two examples raise a question if the Kendall tau distance alone
is an effective measure in the presence of outliers. We attempt to order or rank
objects because we believe that they are comparable to one another, and therefore,
1 A directed graph G = (V,E) is called a tournament if it is complete and directed. In
other words, for any pair u 6= v ∈ V , either (u, v) ∈ E or (v, u) ∈ E.



Ranking with Outliers from Pairwise Comparisons 3

there exists an ordering well summarizing the whole set of pairwise comparisons.
However, this belief is no longer justified if there are some outliers that do
not belong to the ‘same’ category of comparable objects. In the second input
graph, perhaps, we should think of vn as an outlier, as the input graph has no
inconsistencies without it. Counting the number of inconsistent pairs could fail
to capture the quality of the output ordering without removing outliers. This is
the case particularly because we can only hope for approximate solutions and
noises incurred by outliers could render multiplicative approximation guarantees
not very interesting.

Motivated by this, we propose a new measure that factors in outlier vertices
as well as inconsistent pairs/edges:
The Minimum Feedback Arc Set Tournament with Outliers Problem (FASTO).
This is a generalization of FAST. As in FAST, we are given as input a tournament
G = (V,E), along with a pair of target numbers, (x∗, y∗). A pair (V ′ ⊆ V,E′ ⊆ E)
is a feasible solution if (V \ V ′, E \ E′) is a DAG – we refer to V ′ as the outlier
set and E′ as the backward edge set. Here, E′ is a subset of edges between V \V ′.
The solution quality is measured as ( |V

′|
x∗ ,

|E′|
y∗ ), which are the number of outliers

and backward edges incurred, respectively, relative to the target numbers, x∗
and y∗. We can assume w.l.o.g. that x∗ > 0 since otherwise FASTO becomes
exactly FAST.

We will say that a solution is (α, β)-approximate if |V ′| ≤ αx∗ and |E′| ≤ βy∗.
An algorithm is said to be a (α, β)-approximation if it always produces a (α, β)-
approximate solution for all inputs. Here, it is implicitly assumed that there is a
feasible solution (V ′, E′) w.r.t. (x∗, y∗), i.e., |V ′| ≤ x∗ and |E′| ≤ y∗ – if not, the
algorithm is allowed to produce any outputs. Equivalently, the problem can be
viewed as follows: Given that we can remove up to αx∗ vertices as outliers, how
many edges do we need to flip their directions so as to make the input graph
acyclic. But we assume that we are given a target pair (x∗, y∗), as it makes our
presentation cleaner.

1.2 Our Results and Contributions

Throughout this paper, we use n to denote the number of vertices in the input
graph and N = Θ(n2), which is the asymptotic input size. We use Õ or Θ̃ to
suppress logarithmic factors. Recall that x∗ is the target number of outliers. While
we propose several algorithms that are scalable and parallelizable, the following
is our main theoretical result with performance guarantees for all inputs; the first
case is more interesting but we also study the second case for completeness.

Theorem 1. There is an approximation algorithm for FASTO with Õ(N) run-
ning time and Õ(N) memory usage that outputs a solution, with probability at
least 1/2− 1/n, that is

– (O(1), O(1))-approximate when x∗ ≤
√
n (Section 2); and

– (O(log n), O(1))-approximate when x∗ >
√
n (Omitted from this paper due to

space limit).



4 S. Im and M. Montazer Qaem

Further, this algorithm can be adapted to massively parallel computing platforms
so that they run in O(log n) rounds.

We note that the running time of our algorithm, which is almost linear in
the input size, is essentially optimal. To see this, consider a simple instance that
admits an ordering with one backward edge, with (x∗, y∗) = (1, 0). Then, it is
unavoidable to actually find the backward edge, which essentially requires to read
all edges. While we do not know how to obtain a constant approximation for the
case when x∗ >

√
n in the massively parallel computing setting, we can still get

a relatively fast algorithm in the single machine setting. More precisely, we can
obtain an (O(1), O(1))-approximate solution for all instances, with probability at
least 1/2− 1/n, using Õ(

√
Nx∗2) running time and Õ(

√
Nx∗2) memory. For the

formal model of massively parallel computing platforms, see [6].
Below, we outline our contributions.

Proposing a New Metric for Ranking: Ranking with Some Outliers
Removed. Outliers have been extensively studied in various fields, such as
statistics, machine learning, and databases. Outliers were considered before
together with ranking, but they were mostly focused on the evaluation of outliers
themselves, e.g., ranking outliers [22]. Our work is distinguished, as we seek to
find a clean ordering which otherwise could be obscured by outliers. Various
combinatorial optimization problems have been studied in a spirit similar to
ours, particularly for clustering problems [9,10,21,15]. For example, the k-means
clustering problem can be extended to minimize the sum of squares of distances
to the k centers from all points, except a certain number of outliers [16,15]. We
feel that it is a contribution of conceptual importance to study ranking problems
in this direction for the first time. We believe this new direction is worth further
investigation; see Section 4 for future research directions.
Fast and Memory-efficient Algorithms with Provable Guarantees. Our
work is inspired by Aboud’s work [1] on a closely related clustering problem –
in the Correlational Clustering problem, there is an undirected complete graph
where each edge is labeled as either ‘−’ or ‘+’. The goal is to partition the
vertices so as to minimize the number of inconsistent pairs where an edge (u, v)
labeled ‘+’ (resp., ‘−’) incurs a unit cost if the two vertices u and v are placed
into different groups (resp., the same group). This problem is closely related to
FAST, and there exist simple and elegant 3-approximate randomized algorithms,
called KWIK-SORT, for both problems, which can be seen as a generalization
of quicksort: a randomly chosen pivot recursively divide an instance into two
sub-instances. In the case of FAST, one subproblem contains the predecessors of
the pivot and the other the successors of the pivot. Likewise, in the correlational
clustering case, the vertices are divided based on their respective affinities to the
pivot.

Aboud considered an outlier version of the Correlational Clustering problem
and gave an (O(1), O(1))-approximation.2 Not surprisingly, one can adapt his re-

2 More precisely, he considered a slightly more general version where each vertex may
have a different cost when removed as an outlier.



Ranking with Outliers from Pairwise Comparisons 5

sult to obtain a (O(1), O(1))-approximation for FASTO. Unfortunately, Aboud’s
algorithm uses memory and running time that are at least linear in the number
of ‘bad’ triangles, which can be as large as Ω(n3) = Ω(N1.5). In our problem,
FASTO, a bad triangle v1, v2, v3 is a triangle that does not admit a consistent
ranking, i.e., (v1, v2), (v2, v3), (v3, v1) ∈ E or (v2, v1), (v3, v2), (v1, v3) ∈ E.

To develop a fast and memory-efficient algorithm, we combine sampling with
Aboud’s algorithm. This combination is not trivial; for example, applying Aboud’s
algorithm to a reduced-sized input via sampling does not work. At a high-level,
Aboud’s algorithm uses a primal-dual approach. The approach sets up a linear
programming (LP) and solves the LP by increasing the variables of the LP and
its dual, where the constructed integer solution to the LP is used to identify
outlier vertices. We have to adapt the LP, as we have to carefully handle the
sampled points and argue their effects on potential backward edges. After all,
we manage to reduce the memory usage and running time to Õ(N) preserving
the approximation factors up to constant factors3 under the assumption that the
number of outliers is small, which we believe to be reasonable in practice.

Algorithms Adaptable to Massively Parallel Platforms. Finally, our al-
gorithm can be easily adapted to run on massively parallel platforms such as
MapReduce or Spark. On such platforms, each machine is assumed to have insuf-
ficient memory to store the whole input data, and therefore, multiple machines
must be used. Aboud’s algorithm is not suitable for such platforms, as it uses
significantly super-linear memory. In contrast, our algorithm uses sampling ap-
propriately to reduce the input size while minimally sacrificing the approximation
guarantees. More precisely, our algorithm for FASTO can be adapted to run in
O(log n) rounds on the parallel platforms – the number of rounds is often one of
the most important measures due to the huge communication overhead incurred
in each round.

As a byproduct, for the first time we show how to convert KWIK-SORT
for FAST to the distributed setting in O(1) rounds (see Sections 2.1 and 2.4),
which is interesting on its own. The algorithm recursively finds a pivot and
divides a subset of vertices into two groups, thus obtaining O(log n) rounds is
straightforward. But we observe that as long as the pivot is sampled uniformly
at random from each subgroup, the algorithm’s performance guarantee continues
to hold. Therefore, the algorithm still works even if we consider vertices in a
random order as pivots – the sub-instance including the pivot is divided into two.
Thus, we construct a decision tree from a prefix of the random vertex ordering,
and using this decision tree, we partition the vertex set into multiple groups in
a distributed way. This simple yet important observation also plays a key role
in breaking bad triangles, thus reducing the memory usage of our algorithm for
FASTO.

3 We show that our algorithm is (180, 180)-approximate, which can be improved
arbitrarily close to (60, 60) if one is willing to accept a lower success probability. In
contrast, Aboud’s algorithm can be adapted to be (18, 18)-approximate for FASTO;
however as mentioned above, it uses considerably more memory and run time than
ours.



6 S. Im and M. Montazer Qaem

1.3 Other Related Work

The only problem that studies ranking with the possibility of removing certain
outlier vertices, to our best knowledge, is the Feedback Vertex Set problem
(FVS). The FVS problem asks to remove a minimum subset of vertices to make
the remaining graph acyclic. It is an easy observation that FVS is a special
case of our problem with y∗ = 0 if the input graph were an arbitrary directed
graph, not just a tournament. The FVS problem is known to be NP-hard and
the current best approximation for the problem has an approximation factor
of O(log n log log n) [13]. Thus, if we allow the input graph to be an arbitrary
directed graph for our problem FASTO, then we cannot hope for a better than
(O(log n log log n), c)-approximation for any c > 0 unless we improve upon the
best approximation for FVS. We are not aware of any other literature that
considers rank aggregation with the possibility of removing outlier vertices, with
the exception of the aforementioned Aboud’s work on a closely related clustering
problem [1]. Due to the vast literature on the topic, we can only provide an
inherently incomplete list of work on ranking without outliers being considered.
There exist several approximation algorithms for FAST. As mentioned, Ailon et
al. [3] give the randomized KWIK-SORT that is 3-approximate for the problem,
which can be derandomized [25]. Also, the algorithm that orders vertices according
to their in-degrees is known to be a 5-approximation [11]. Kenyon-Mathieu
and Schudy [18] give a PTAS; a PTAS is a (1 + ε)-approximate polynomial-
time algorithm for any fixed ε > 0. The complementary maximization version
(maximizing the number of forward edges in the linear ordering) was also studied,
and PTASes are known for the objective [14,7]. For partial rankings, see [2] and
pointers in the paper. Extension to online and distributed settings are studied in
[26] but the performance guarantee is not against the optimal solution, but against
a random ordering, which incurs Θ(n2) backward edges. For another extensive
literature on stochastic inputs, see [4,19,5,23,12,24] and pointers therein.

1.4 Notation and Organization

We interchangeably use (u, v) ∈ E and u ≺ v – we will say that u is v’s predecessor,
or equivalently, v is u’s successor. We use Õ or Θ̃ to suppress logarithmic factors
in the asymptotic quantities. We use n to denote the number of vertices in the
input graph and N = Θ(n2) to denote the asymptotic input size. The subgraph
of G induced on V ′ is denoted G[V ′]. Let [k] := {1, 2, 3, . . . , k}.

In Section 2, we present our algorithm for FASTO when the target number
of outliers is small, i.e., x∗ ≤

√
n. We omit the other case in this paper due to

space limit. In Section 3, we evaluate our algorithms and other heuristics we
develop via experiments. In Section 4, we close with several interesting future
research directions. Due to the space constraints, we will defer most analysis to
the full version of this paper.

2 When the Target Number of Outliers x∗ is Small

Our algorithm when x∗ ≤
√
n consists of three main steps:



Ranking with Outliers from Pairwise Comparisons 7

Step 1: Partitioning via KWIK-SORT-SEQ on Sample. Each vertex in
V is sampled independently with probability 1

4x∗ and placed into S. Randomly
permute S and run KWIK-SORT-SEQ on the ordered set S to construct a
decision tree τ(S). Let k = |S|. Partition the other vertices, V \ S, into k + 1
groups, V1, V2, · · · , Vk+1, using τ(S).
Step 2: Identifying Outliers via Primal-Dual. Formulate Linear Program-
ming (LP) relaxation and derive its dual. Solve the primal and dual LPs using a
primal-dual method, which outputs the set of outliers to be chosen.
Step 3: Final Ordering. Run KWIK-SORT on the non-outlier vertices in each
group Vi, i ∈ {1, 2, . . . k + 1}.

In the following, we give a full description of all the steps of our algorithm; the
last step is self-explanatory, and thus, is briefly discussed at the end of Section 2.2.
Following the analysis of the algorithm, the extension to the distributed setting
is discussed in the final subsection.

2.1 Step 1: Partitioning via KWIK-SORT-SEQ

We first present a sequential version of the original KWIK-SORT algorithm [3]
which was described in a divide-and-conquer manner. As usual, there are multiple
ways to serialize a parallel execution. So, as long as we ensure that a pivot is
sampled from each subgraph uniformly at random for further partitioning, we can
simulate the parallel execution keeping the approximation guarantee. Here, we
introduce one specific simulation, KWIK-SORT-SEQ, which generates a random
ordering of V , takes a pivot one by one from the random ordering, and gradually
refines the partitioning. We show that this is indeed a valid way of simulating
KWIK-SORT.

Algorithm 1 KWIK-SORT-SEQ (G = (V,A))
1: π(V )← a random permutation of V
2: V = {V }
3: For i = 1 to n = |V |:
4: πi(V )← ith vertex in the ordering π(V )
5: Let V ′ ∈ V be such that πi(V ) ∈ V ′
6: V ′L, V

′
R ← ∅

7: For all vertices j ∈ V ′ \ {πi(V )}:
8: If (j, i) ∈ A, then add j to V ′L; else add j to V ′R
9: Put V ′L, {πi(V )}, V ′R in place of V ′, in this order
10: Return V (Order vertices in the same order they appear in V).

Lemma 2. KWIK-SORT-SEQ is a legitimate way of simulating KWIK-SORT,
keeping the approximation guarantee. Therefore, KWIK-SORT-SEQ is a 3-
approximation for FAST.



8 S. Im and M. Montazer Qaem

Fig. 2: Illustration of the construc-
tion of τ(S) and partitioning of V \S
via τ(S). In this example, the de-
cision tree τ(S) is induced by a(n
ordered) sample S = {s1, s2, s3},
where s1 ≺ s2, s3 ≺ s2, and s1 ≺ s3.
If a vertex v ∈ V \ S is such that
s1 ≺ v, v ≺ s2, s3 ≺ v, then v is
placed into G3.

s2

s1

s3

G1

G2

G4

G3

Due to the space constraints, we de-
fer the proof to the full version of this pa-
per. Note that a fixed random permutation
π(V ) completely determines the final or-
dering of vertices. Likewise, a fixed length-i
prefix of π(V ) completely determines the
intermediate partitioning V after π1(V ),
π2(V ), . . ., πi(V ) being applied, and the
partitioning only refines as more pivots
are applied. Thus, we can view this inter-
mediate partitioning as the classification
outcome of V \S via the decision tree τ(S)
generated by KWIK-SORT-SEQ on the or-
dered set S = {π1(V ), π2(V ), . . . , πi(V )}.
See Fig. 2 for illustration.

The first step of our algorithm is essen-
tially identical to what KWIK-SORT-SEQ
does, except that our algorithm only needs
a prefix of the random permutation, not
the entire π(V ). It is an easy observation that sampling each vertex independently
with the same probability and randomly permuting them is a valid way of getting
a prefix of a random permutation. We note that we sample each vertex with
probability 1

4x∗ , to avoid sampling any outlier (in the optimal solution) with a
constant probability.

2.2 Step 2: Identifying Outliers

To set up our linear programming relaxation, we first need some definitions.
We consider the ordered sample S and the induced groups V1, V2, · · · , Vk+1 in
the order they appear in the linear ordering produced by KWIK-SORT-SEQ
performed in Step 1. For notational convenience, we reindex the sampled points
so that they appear in the order of s1, s2, · · · , sk. We classify edges into three
categories: Let Ein be the edges within the groups, Sback the backward edges
with both end points in S, and Eback the backward edges e = (u, v) such that
u ∈ Vi, v ∈ Vj for i > j; or u = si, v ∈ Vj for i ≥ j; or v = si, u ∈ Vj for i ≤ j.
See Fig. 3.

Finally, we let Tin be the set of bad triangles with all vertices in the same
group; recall that a bad triangle is a cycle of length 3. We are now ready to define
an integer programming (IP) for a penalty version of FASTO, where a backward
edge incurs a unit penalty and each outlier incurs c := y∗/x∗ units of penalty:

LP primal
fasto (G) := min

∑
e∈Ein

ye +
∑

x∈V \S

px · c+
∑

e∈Eback

ze + |Sback| (PRIMAL)



Ranking with Outliers from Pairwise Comparisons 9

s.t.
∑
e⊂t

ye +
∑
x∈t

px ≥ 1 ∀t ∈ Tin (1)

pu + pv + ze ≥ 1 ∀e =(u, v) ∈ Eback : {u, v} ∩ S = ∅ (2)
pu + ze ≥ 1 ∀e =(u, v) ∈ Eback : v ∈ S ∧ u ∈ V \ S (3)
pv + ze ≥ 1 ∀e =(u, v) ∈ Eback : u ∈ S ∧ v ∈ V \ S, (4)

over variables ye ≥ 0 for all e ∈ Ein, px ≥ 0 for all x ∈ V \ S, and ze ≥ 0 for all
e ∈ Eback.

s1 s2 s3

Sback

Eback

Fig. 3: Classification of edges. The rectangles shown represent groups V1, V2, V3, V4
from the left. Edges in Sback are shown as solid arcs and edges Eback as dotted
arcs. Edges in Ein are those within groups and are omitted.

This IP has the following interpretation: an edge e in Ein (Eback, resp.)
becomes backward if ye = 1 (ze = 1, resp.). Assuming that we will choose no
sampled points as outliers, all edges in Sback will become backward. And each
non-sampled point x incurs penalty c if it is chosen as an outlier when px = 1.
Constraint (1) follows from the fact that for each bad triangle t, at least one edge
e of t must become backward unless t is broken; a triangle gets broken when
at least one of its vertices is chosen as outlier. The other constraints force each
edge in Eback to become backward if its neither end point is chosen as outlier.
A Linear Programming (LP) relaxation, which will be referred to as LP primal

fasto ,
is obtained by allowing variables to have fractional values. Using the fact that
KWIK-SORT is a 3-approximation, assuming that there is a feasible solution
w.r.t. the target pair (x∗, y∗), conditioned on the sample being disjoint from the
feasible solution’s outlier, we can argue that the expected optimal objective of
LP primal

fasto is at most 4y∗.

To obtain an approximate integer solution to LP primal
fasto , we will use the primal-

dual method. Primal-dual is a common technique for designing approximation
algorithms [27]. The dual LP is shown below.

LP dual = max
∑
t∈Tin

αt +
∑

e∈Eback

βe + |Sback| (DUAL)



10 S. Im and M. Montazer Qaem

s.t.
∑
e⊂t

αt ≤ 1 ∀e ∈ Ein (5)∑
x∈t

αt +
∑
x∈e

βe ≤ c ∀x /∈ S (6)

βe ≤ 1 ∀e ∈ Eback (7)

To develop an algorithm based on a primal-dual method, we replace Constraint
(6) with two sufficient conditions (8).∑

x∈t
αt ≤

3

5
c ∀x ∈ V \ S; and

∑
x∈e

βe ≤
2

5
c ∀x ∈ V \ S (8)

Below, we give our algorithm, Algorithm 3, that sets the variables of our
primal with the help of the above dual. Although the algorithm updates all
variables, the only information we need to run the final Step 3 is the outlier set U ,
as Step 3 runs KWIK-SORT on each group with vertices U removed as outliers.
But the other outputs will be useful for the analysis of our algorithm. Note that
although the dual variables can have fractional values, the primal variables will
only have integer values. Note that E′ and E2 represent the backward edges
within the groups and across the groups, respectively; since our algorithm samples
no outlier vertices in the optimal solution, all edges in Sback become backward
and they are counted separately.

Algorithm 2 Primal-Dual Algorithm

1: Initialization: p← 0, y ← 0, z ← 0, α← 0, β ← 0, U ← ∅, E′ ← ∅, E2 ← ∅. Initially,
all αt and βe variables are active.

2: while ∃ active dual variables αt or βe do
3: Uniformly increase active dual variables until Constraints (5),

(7), either of the two in (8) become tight.
4: for each e ∈ Ein s.t.

∑
e⊂t αt = 1, do add e to E′; and

inactivate αt for all t s.t. e ⊂ t.
5: for each x ∈ V \ S s.t.

∑
x∈t αt = 3

5
c, do add x to U ; and inactivate

αt for all t s.t. x ∈ t
6: for each x ∈ V \ S s.t.

∑
x∈e βe = 2

5
c, do add x to U ; and inactivate

βe for all e s.t. x ∈ e.
7: for each e ∈ Eback s.t. βe = 1, do add e to E2; and inactivate βe.
8: Remove from E′ and E2 all the edges e with e ∩ U 6= ∅.
9: for e ∈ E′ do ye ← 1; for ∀e ∈ E2 do ze ← 1; and for ∀x ∈ U do px ← 1
10: return p, y, z, U,E′, E2

2.3 Sketch of the Analysis: Approximation Guarantees, Memory
Usage, and Running Time

In this subsection, we only give a sketch of the analysis due to space constraints.
In Step 1, we can show that the sample S is disjoint from the optimal solution’s



Ranking with Outliers from Pairwise Comparisons 11

outlier set, with a constant probability (at least 3/4). Conditioned on that, as
mentioned earlier, the expected optimal objective of LP primal

fasto can be shown to
be at most 4y∗. The primal-dual method in Step 2 obtains an integer solution to
LP primal

fasto that is a constant approximate against the optimal LP objective, which
is established by LP duality. Therefore, the outlier set U ’s contribution to the
LP primal

fasto ’s objective is c|U | = (y∗/x∗) · |U | and it is upper bounded by O(1)y∗.
This shows our algorithm chooses at most O(1)x∗ outliers. We now turn our
attention to upper bounding the number of backward edges. The primal solution
to LP primal

fasto gives the number of backward edges within groups ‘covering’ all the
unbroken triangles, which upper bounds the minimum number of backward edges
achievable within groups [3], and counts the number of other backward edges
explicitly by ze and |Sback|. Since the latter is determined by the partial ordering
produced by Step 1 and U and we run a 3-approximate KWIK-SORT on each
group, we can also establish that the final number of backward edges output is
O(1)y∗.

Now we discuss our algorithm’s memory usage and running time. We show
that each group size is Õ(n/k) if |S| = Ω(log n). This requires us to prove that a
randomly chosen pivot partitions a problem into two subproblems of similar sizes
with a constant probability, meaning that there is a large fraction of vertices that
have similar numbers of predecessors and successors. Then, the total number of
bad triangles within groups is (Õ(n/k))3 ·k = Õ(n2) = Õ(N) when k ' n

x∗ ≥
√
n,

as desired. Since the number of variables in our algorithm, particularly in Step
2 is dominated by the number of bad triangles in consideration and edges, it
immediately follows that the memory usage is Õ(N). Further, one can increase
dual variables by a factor of (1 + ε) in each iteration for an arbitrary constant
precision parameter ε > 0, starting from 1/n2. Using this one can show the
number of iterations needed is O(log n). This immediately leads to the claim that
the running time is Õ(n2) = Õ(N) when x∗ ≤

√
n.

2.4 Extension to the Distributed Setting

Due to space constraints, in this subsection, we briefly discuss how we can adapt
the algorithm to run in a distributed way. For formal theoretical models of the
distributed setting we consider, see [6]. We assume that the input graph is stored
across machines arbitrarily. Clearly, Step 1 of taking a sample S can be done in
parallel. All edges between points in S are sent to a machine to construct the
decision tree τ(S). The decision tree is broadcast to all machines to partition
vertices in k+1 groups in a distributed way. If FAST were the problem considered,
we would sample each vertex with probability 1/

√
n and move the subgraph

induced on each group Gi to a machine and continue to run KWIK-SORT on the
subgraph. Then, we can implement KWIK-SORT to run in O(1) rounds assuming
that each machine has Ω̃(n) memory. If FASTO is the problem considered, we
can implement Step 2 in O(log n) rounds, as discussed in the previous subsection.
Step 3, which is the execution of KWIK-SORT on each group, can be run in one
round. Again, the only constriant is that each machine has Ω̃(n) memory for an
arbitrary number of machines.



12 S. Im and M. Montazer Qaem

3 Experiments

In this section, we perform experiments to evaluate our algorithm against synthetic
data sets. All experiments were performed on Ubuntu 14.04 LTS with RAM
size 15294 MB and CPU Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz. We
implemented the following four algorithms including ours for comparison. The
last two (RSF and IOR) are new heuristics we developed in this paper, but with
no approximation guarantees. We assume that all algorithms are given a ‘budget’
B on the number of outliers, which limits the number of vertices that can be
chosen as outliers.

– Primal-Dual with Sampling (PDS): Our algorithm when x∗ is small. We
run the algorithm for all target pairs (x∗, y∗) of powers of two, where x∗ ∈
[0, B], y∗ ∈ [0, B′], and choose the best solution with at most 1.5B outliers.
Here, B′ is the number of back edges output by KWIK-SORT. Note that
we allow PDS to choose slightly more outliers although it may end up with
choosing less since the only guarantee is that PDS chooses up to O(x∗)
outliers. The running time is summed up over all pairs.

– Aboud’s algorithm (ABD): The algorithm in [1] for Correlational Clustering
is adapted to FASTO. As above, the best solution with at most 1.5B outliers
is chosen over all the above target pairs. ABD is essentially PDS with S = ∅
in Step 1. The running time is again summed up over all pairs considered.

– Random Sample Filter (RSF): Take a random Sample S from V (for fair
comparison, the same sample size is used as in PDS). Order S using KWIK-
SORT and let π(S) be the resulting order. For each v ∈ V \S, let b(v) be the
minimum number of backward edges with v as one endpoint over all these
|S|+ 1 possible new permutations created by adding v to π(S). Outputs B
vertices v ∈ V \ S with the highest b(v) values as the outliers and order the
remaining vertices by KWIK-SORT.

– Iterative Outlier Removal (IOR): We iteratively remove the vertex without
which KWIK-SORT outputs the least back edges. Initially, U = ∅. In each
iteration, for each vertex v ∈ V , run KWIK-SORT on V \ v, which yields |V |
permutations. Among all the achieved permutations, consider the one with
minimum number of backward edges. Let v ∈ V be the missing vertex in
this permutation. Add v to U ; and V ← V \ {v}. Stop when |U | = B. Then,
output U as outliers and run KWIK-SORT on V/U .

We mainly use two natural models to generate synthetic data sets. The first
model, which we call the uniform model, assumes inconsistencies uniformly scat-
tered over edges, in addition to randomly chosen outlier vertices. More precisely,
the uniform model is described by a quadruple 〈p, q, r, n〉: For a tournament
G = (V,E) over n vertices with no inconsistencies, flip each edge with probability
p and perturb each vertex v with probability q by flipping each edge incident on
v with probability r – all independently. The second model, which essentially
follows the Bradley-Terry-Luce model [8,20] and therefore we refer to as BTL,
assumes that each vertex i has a certain (hidden) score wi > 0. Then, each pair



Ranking with Outliers from Pairwise Comparisons 13

of vertices i and j has edge (i, j) with probability wj

wi+wj
; or edge (j, i) with the

remaining probability. Intuitively, if edge (i, j) is present for every i, j such that
wi < wj , we will have a tournament that is a DAG. However, some edges are
flipped stochastically – in particular, edges between vertices with similar scores
are more likely to be flipped. Assuming that the underlying vertex scores are a
geometric sequence, we can compactly describe a BTL instance by a quadruple
〈b, q, r, n〉, where the score of the n vertices forms a geometric sequence of ratio
b. Then, edges are first generated as described above, and vertices are perturbed
using the parameters q and r as are done for the uniform model.

We first confirm that ABD is not very scalable.

Table 1: PDS withsample size 1/(2q) = 50 vs. ABD for the uniform model
〈p = 0.001, q = 0.01, r = 0.50, n〉 and B = nq. Bad 4s denotes the number of
bad triangles in 1000 units.

pts (n) outliers back edges bad 4s time (sec)
PDS ABD PDS ABD PDS ABD PDS ABD

250 0 2 269 33 0 18 0.2 3.8
500 6 7 377 152 365 228 4.8 100.0
1000 9 N/A 1597 N/A 441 1032 20.0 600+

Even when n = 1000, ABD does not terminate in 600 seconds while our
algorithm PDS does in 20 seconds. Our algorithm’s speed-up is explained by the
significantly smaller number of bad triangles. For n = 500, PDS outputs factor
2 or 3 more back edges than ABD. But we were not able to compare the two
algorithms for larger inputs because of ABD’s large run time.

Next, we compare PDS to RSF and IOR for inputs generated under the
uniform and BTL models. Note that RSF and IOR choose exactly the same
number of outliers, B.

Table 2: PDS with sample size 1/(2q) = 50 vs RSF vs IOR for the uniform input
〈p = 0.001, q = 0.01, r = 0.50, n〉 and B = nq.

pts (n) outliers back edges (103) time (sec)
RSF PDS RSF IOR PDS RSF IOR PDS

500 5 6 1.1 0.98 0.4 0.1 0.1 4.7
1000 10 9 2.6 1.8 1.6 0.4 0.5 20.3
2000 20 16 7.5 6.1 2.5 1.1 3.8 145.4
4000 40 55 26.2 71.5 11.8 3.8 41.3 1132



14 S. Im and M. Montazer Qaem

Table 3: PDS with sample size 1/(2q) = 50 vs RSF vs IOR for the BTL input with
q = 0.01, r = 0.50, (b, n) ∈ {(4.2, 500), (2.3, 1000), (1.57, 2000), (1.266, 4000)};
here B = nq.

pts (n) outliers back edges (103) time (sec)
RSF PDS RSF IOR PDS RSF IOR PDS

500 5 1 0.3 0.0 0.3 0.1 0.1 1
1000 10 9 0.8 0.3 0.8 0.3 0.5 8.3
2000 20 26 7.9 7.6 1.6 0.9 2.3 73
4000 40 33 8.1 8.0 7.9 3.4 15.9 381.3

Our algorithm PDS outperforms the other two in terms of the number of
back edges although it occasionally chooses slightly more outliers. However, PDS
is considerably slower than RSF and IOR.

Finally, to showcase the major advantage of our algorithm PDS that it has
performance guarantees for all inputs, in contrast to the two heuristics RSF
and IOR, we consider certain specific instances. First, we observe that RSF
significantly underperforms compared to PDS and IOR when the instance is
constructed by choosing

√
n points at random and flipping edges among them.

As before, note that RSF and IOR choose the same number of outliers, B, thus
we only display RSF for the outliers column.

Table 4: PDS with sample size
√
n/2 vs RSF with sample size

√
n/2 vs IOR.

Each vertex is perturbed with probability 1/
√
n – each edge between perturbed

vertices is flipped with probability 1/2. B =
√
n.

pts (n) outliers back edges time (sec)
RSF PDS RSF IOR PDS RSF IOR PDS

1000 31 31 226 0 0 0.2 1.2 6.4
2000 44 44 541 0 0 0.8 7.3 27.2
4000 63 63 1570 0 0 3.3 62.8 130.2
8000 89 89 2887 0 0 13.4 442.0 702.7

As shown in Table 4, when n = 4000, all algorithms choose exactly 63 outliers;
but RSF produces 1570 back edges while the other two produce no back edges.
For all cases when n = 1000, 2000, 4000 and 8000, PDS and IOR create no back
edges while RSF does a considerable number of back edges. Interestingly, IOR
appears not to be very scalable. For n = 8000, IOR is only twice faster than
PDS.

We continue to observe that IOR also quite underperforms compared to PDS
for a certain class of instances. The instance we create is parameterized by t. The
instance is constructed by combining 4t sub-tournaments, G1, G2, G3, · · · , G4t,
which are identical. Each Gi has t vertices and admits a perfect ordering with
one vertex removed therein – each edge in Gi incident on the vertex is flipped



Ranking with Outliers from Pairwise Comparisons 15

with probability 1/2. We connect the sub-tournaments, so that for any i < j, all
vertices in Gi are predecessors of all vertices in Gj . As shown in Table 5, when
n = 4096, PDS creates no back edges while IOR creates 313 back edges; both
chooses the same number of outliers, 128. Further, PDS is slower than IOR only
by a factor of at most 3.

Table 5: PDS with sample size t/2 vs IOR

pts (n) outliers back edges time (sec)
IOR PDS IOR PDS IOR PDS

1024 64 62 87 7 2.4 21.4
2116 92 89 142 79 16.7 203.2
4096 128 128 313 0 129.5 305.5

4 Conclusions

In this paper, we studied how to order objects in the presence of outliers. In
particular, we developed approximation algorithms that are nearly optimal in
terms of running time and can be adapted to the distributed setting, along with
potentially useful heuristics. There are many interesting future research directions.
First, our algorithm may choose more than x∗ outliers. It would be interesting if
one can get an approximation algorithm that finds an ordering resulting in O(1)y∗

backward edges with strictly no more than x∗ outliers. Second, we currently do
not know if it is possible to obtain a (O(1), O(1))-approximation algorithm whose
running time is almost linear in the input size when x∗ >

√
n. Finally, it would

be of significant interest to consider arbitrary directed graphs as input.

Acknowledgements

This work was supported in part by NSF grants CCF-1409130 and CCF-1617653.

References

1. Aboud, A.: Correlation clustering with penalties and approximating the reordering
buffer management problem. Master’s thesis. The Technion Israel Institute of
Technology (2008)

2. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica
57(2), 284–300 (2010)

3. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking
and clustering. Journal of the ACM 55(5), 23 (2008)

4. Altman, A., Tennenholtz, M.: Ranking systems: the pagerank axioms. In: ACM
EC (2005)

5. Ammar, A., Shah, D.: Ranking: Compare, don’t score. In: IEEE Allerton (2011)



16 S. Im and M. Montazer Qaem

6. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: ACM STOC. pp. 574–583 (2014)

7. Arora, S., Frieze, A., Kaplan, H.: A new rounding procedure for the assignment prob-
lem with applications to dense graph arrangement problems. Math programming
92(1), 1–36 (2002)

8. Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika 39(3/4), 324–345 (1952)

9. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: ACM-SIAM SODA (2001)

10. Chen, K.: A constant factor approximation algorithm for k-median clustering with
outliers. In: ACM-SIAM SODA (2008)

11. Coppersmith, D., Fleischer, L.K., Rurda, A.: Ordering by weighted number of wins
gives a good ranking for weighted tournaments. ACM Transactions on Algorithms
6(3), 55 (2010)

12. Duchi, J.C., Mackey, L.W., Jordan, M.I.: On the consistency of ranking algorithms.
In: ICML. pp. 327–334 (2010)

13. Even, G., (Seffi) Naor, J., Schieber, B., Sudan, M.: Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (Feb
1998)

14. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combi-
natorica 19(2), 175–220 (1999)

15. Guha, S., Li, Y., Zhang, Q.: Distributed partial clustering. In: ACM SPAA (2017)
16. Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods

for k-means with outliers. PVLDB 10(7), 757–768 (2017)
17. Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)
18. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: ACM STOC

(2007)
19. Lu, T., Boutilier, C.: Learning mallows models with pairwise preferences. In: ICML

(2011)
20. Luce, R.D.: Individual Choice Behavior a Theoretical Analysis. John Wiley and

sons (1959)
21. Malkomes, G., Kusner, M.J., Chen, W., Weinberger, K.Q., Moseley, B.: Fast

distributed k-center clustering with outliers on massive data. In: NIPS (2015)
22. Muller, E., Sánchez, P.I., Mulle, Y., Bohm, K.: Ranking outlier nodes in subspaces

of attributed graphs. In: IEEE ICDEW (2013)
23. Negahban, S., Oh, S., Shah, D.: Rank centrality: Ranking from pairwise comparisons.

Operations Research 65(1), 266–287 (2016)
24. Rajkumar, A., Agarwal, S.: A statistical convergence perspective of algorithms for

rank aggregation from pairwise data. In: ICML (2014)
25. Van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation

and other ranking and clustering problems. In: WAOA. pp. 260–273. Springer (2007)
26. Wauthier, F., Jordan, M., Jojic, N.: Efficient ranking from pairwise comparisons.

In: ICML (2013)
27. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-

bridge University Press (2011)


	Fast and Parallelizable Ranking with Outliers from Pairwise Comparisons

