Neural Message Passing for Multi-Label
Classification

Jack Lanchantin'D<], Arshdeep Sekhon', and Yanjun Qi'

University of Virginia, Charlottesville VA 22903, USA
{jjl5sw,asbcu,yq2h}@virginia.edu

Abstract. Multi-label classification (MLC) is the task of assigning a
set of target labels for a given sample. Modeling the combinatorial label
interactions in MLC has been a long-haul challenge. We propose Label
Message Passing (LaMP) Neural Networks to efficiently model the joint
prediction of multiple labels. LaMP treats labels as nodes on a label-
interaction graph and computes the hidden representation of each label
node conditioned on the input using attention-based neural message pass-
ing. Attention enables LaMP to assign different importances to neighbor
nodes per label, learning how labels interact (implicitly). The proposed
models are simple, accurate, interpretable, structure-agnostic, and appli-
cable for predicting dense labels since LaMP is incredibly parallelizable.
We validate the benefits of LaMP on seven real-world MLC datasets,
covering a broad spectrum of input/output types and outperforming the
state-of-the-art results. Notably, LaMP enables intuitive interpretation
of how classifying each label depends on the elements of a sample and at
the same time rely on its interaction with other labels’.

1 Introduction

Multi-label classification (MLC) is receiving increasing attention in areas such
as natural language processing, computational biology, and image recognition.
Accurate and scalable MLLC methods are in urgent need for applications like
assigning topics to web articles, or identifying binding proteins on DNA. The
most common and straightforward MLC method is the binary relevance (BR)
approach that considers multiple target labels independently [27]. However, in
many MLC tasks there is a clear dependency structure among labels, which
BR methods ignore. Unfortunately, accurately modelling all combinatorial label
interactions is an NP-hard problem. Many types of models, including a few deep
neural network (DNN) based, have been introduced to approximately model such
interactions, thus boosting classification accuracy.

Our main concern of this paper is how to represent multiple labels jointly (and
conditioned on the input features) in order to make accurate predictions. The most
relevant literature addressing this concern falls roughly into three groups. The
first group, probabilistic classifier chain (PCC) models, formulate the joint label

! We provide our code and datasets at https://github.com/QData/LaMP

2 J. Lanchantin et al.

dependencies using the chain rule and perform MLC in a sequential prediction
manner [22, 32, 19]. Notably, [19] used a recurrent neural network (RNN) sequence
to sequence (Seq2Seq) architecture [11] for MLC and achieved the state-of-the-
art performance on multiple text-based datasets. However, these methods are
inherently unfit for MLC tasks due to their incapacity to be parallelized, and
inability to perform well in dense label settings, or when there are a large number
of positive labels (since errors propagate in the sequential prediction). We refer
the reader to the supplementary material for a full background and analysis of
PCC methods (Appendix section 5). The second group learns a shared latent
space representing both input features and output labels, and then upsamples
from the space to reconstruct the target labels [33, 5]. The main drawback of this
group is the interpretability issue with a learned low dimensional latent space,
as many real-world applications prefer interpretable predictors. The third group
models conditional label dependencies using a structured output or graphical
model representation [17,26]. However, these methods are often limited to only
considering pair-wise dependencies due to computational constraints, or are forced
to use some variation of approximate inference which has no clear representation
of conditional dependencies.

Thus our main question is: is it possible to have accurate, flexible and explain-
able MLC methods that are applicable to many dense labels? This paper provides
empirical results showing that this is possible through extending attention based
Message Passing Neural Networks (MPNNs) to learn the joint representation of
multiple labels conditioned on input features. MPNNs [10] are a class of methods
that efficiently learn the joint representations of variables using neural message
passing strategies. They provide a flexible framework for modeling multiple
variables jointly which have no explicit ordering.

The key idea of our method is to rely on attention-based neural message
passing entirely to draw global dependencies from labels to input features, and
from labels to labels. To the best of our knowledge, this is the first extension
of MPNNs to model a conditional joint representation of output labels, and
additionally the first extension of MPNNs to model the interactions of variables
where the exact structure is unknown. We name the proposed method Label
Message Passing (LaMP) Networks since it performs neural message passing on
an unknown, fully-connected label-to-label graph. Through intra-attention (aka
self-attention), LaMP assigns different importance to different neighbor nodes
per label, dynamically learning how labels interact conditioned on a specific
input. We further extend LaMP to cases when a known label interaction graph
is provided by modifying the intra-attention to only attend over a node’s known
neighbors. LaMP networks allow for parallelization in training and testing and
can work with dense labels, overcoming the drawbacks of PCC methods.

LaMP most closely belongs to the third MLC category we mentioned above,
however it trains a unified model to classify each label and to model the label to
label dependencies at the same time, in an end-to-end fashion. The important
aspect is that LaMP networks automatically learn the output label dependency

Neural Message Passing for Multi-Label Classification 3

structure conditioned on a specific input using neural message passing. This in
turn can easily be interpreted to understand the conditional structure.

The main contributions of this paper include: (1) Accurate MLC: Our model
achieves similar, or better performance compared to the previous state-of-the-art
across five MLC metrics. We validate our model on eight ML.C datasets which
cover a wide spectrum of input data structure: sequences (English text, DNA),
tabular (binary word vectors), graph (drug molecules), and images, as well as
output label structure: unknown and graph. (2) Interpretable: Although deep-
learning based systems have widely been viewed as “black boxes”, our attention
based LaMP models allow for a straightforward way to extract three different
types of model visualization: intermediate network predictions, label to feature
dependencies, and label to label dependencies.

2 Method: LaMP Networks

Notations. We define the following notations, used throughout the paper. Let
D = {(zn,yn)})_, be the set of data samples with inputs = € X and outputs
y € Y. Inputs x are a (possibly ordered) set of S components {x1,zs,...,x5},
and outputs y are a set of L labels {y1, 42, ...,yr}. MLC involves predicting the
set of binary labels {y1,y2,...,yr},v: € {0,1} given input x.

In general we can assume to represent the input feature components as
embedded vectors {21, 2o, ..., z5 }, 2; € R%, using some learned embedding matrix
W? € R%*?, Here d is the embedding size and, ¢ is the size of x;. 2; can be any
component of a particular input (for example, words in a sentence, patches of an
image, nodes of a known graph, or one of the tabular features).

Similarly, labels can be first represented as embedded vectors {u!=% u5=0, ...,
w0}, ul € RY, through a learned embedding matrix WY € RL*? where L
denotes the number of labels. Here we use t to represent the ‘state’ of the
embedding after the t** update step. This is because in LaMP networks, each
label embedding is updated for ¢ steps before the predictions are made. The key
idea of LaMP networks is that labels are represented as nodes in a label-interaction
graph Gy, denoting nodes as embedding vectors {u} ;}. LaMP networks use
MPNN modules with attention to pass messages from input embeddings {z1.5}
to Gyy, and then within Gy, to model the joint prediction of labels.

2.1 Background: Message Passing Neural Networks

Message Passing Neural Networks (MPNNs) [10] are a generalization of graph
neural networks (GNNs) [23]. MPNNs model variables as nodes on a graph G.
Here G = (V, E), where V describes the set of nodes (variables) and F denotes
the set of edges (about how variables interact with other variables). In MPNNs,
joint representations of nodes and edges are modelled using message passing
rather than explicit probabilistic formulations, allowing for efficient inference.
MPNNs model the joint dependencies using message function M and node
update function U? for T time steps, where t is the current time step. The

4 J. Lanchantin et al.

hidden state v! € R? of node i € G is updated based on messages m} from its
neighboring nodes {v)} defined by neighborhood N (i):

mi= > M'(v},v), (1)
JEN (1)
vt = U'(mj). (2)

After T rounds of iterative updates to spread information to distant nodes, a
readout function R is used on the updated node embeddings to make predictions
like classifying nodes or classifying properties about the graph.

Many possibilities exist for functions M? and U?. We specifically choose to
pass messages using intra-attention (also called as self-attention) neural message
passing which enable nodes to attend over their neighborhoods differentially.
This allows for the network to learn different importances for different nodes
in a neighborhood, without depending on knowing the graph structure upfront
(essentially learning the unknown graph structure) [30]. In this formulation,
messages for node v} are obtained by a weighted sum of all its neighboring
nodes {v; c N(i)} where the weights are calculated by attention representing the
importance of each neighbor for a specific node [1]. In the rest of the paper, we
use “graph attention” and ‘neural message passing” interchangeably.

Intra-attention neural message passing works as follows. We first calculate

attention weights af; for pair of nodes (vf, v%) using attention function a(-):

explel;)
al. = softmax;(e!,) = 2 (3)
! ! ZkGN(i) exp(ej;)
t ot ot
€ij = a(vivvj) (4)
Wi T (WHp!
aot, vty =)W) o)

Vd

where eﬁj represents the importance of node j for node 7, however un-normalized.
egj are normalized across all neighboring nodes of node ¢ using a softmax function
(Eq 3) to get af;. For the attention function a(-), we used a scaled dot product
with node-wise linear transformations W4 € R4*? on node v! and W* € R?x4
on node vj. Scaling by V/d is used to mitigate training issues [29].

Then we use a so called attention message function MY, to produce the

message from node j to node ¢ using the learned attention weights aﬁj and
another transformation matrix Wv € R%*¢:
M oin (v, 'u§; W)= aﬁjW“v;ﬁ, (6)
m! =v! + Z Matu(vf,vé; w). (7)
JEN(4)

Eq 7 computes the full message m! for node v! by linearly combining messages
from all neighbor nodes j € A/(i) with a residual connection on the current v}.

Neural Message Passing for Multi-Label Classification 5
Lastly, node v! is updated to next state v/™" using message m! by a multi-
layer perceptron (MLP) update function Up,p, plus a m! residual connection:

Upip(mt; W) = ReLUW m! + b)) TW? 4 by (8)
vt = mi + U (m; W).)

Function U, is parameterized with matrices {W" € R4*4 Wb ¢ R4*d} Tt is
important to note that W in Eq 9 are shared (i.e., separately applied) across all
nodes. This can be viewed as 1-dimensional convolution operation with kernel
and stride sizes of 1. Weight sharing across nodes is a key aspect of MPNNs,
where node dependencies are learned in an order-invariant manner.

2.2 LaMP: Label Message Passing

Given the input embeddings {z1, 2o, ..., 25 }, the goal of Label Message Passing is
to model the conditional dependencies between label embeddings {u!,u}, ..., u’ }
using Message Passing Neural Networks. We assume that the label embeddings
are nodes on a label-interaction graph called Gy, where the initial state of the
embeddings {u{.;} at t = 0 are obtained using label embedding matrix W¥.

Each step ¢ in Label Message Passing consists of two parts in order to update
the label embeddings: (a). Feature-to-Label Message Passing, where messages are
passed from the input embeddings to the label embeddings, and (b). Label-to-
Label Message Passing, where messages are passed between labels. An overview
of our model is shown in Fig. 1. We explain these two parts in detail in the
following subsections. LaMP Networks use 7' steps of attention-based neural
message passing to update the label nodes before a readout function makes a
prediction for each label i on its final state w! .

. @
- 1@ O

_Feature-to-Label MP O Vi _Label-to-Label MP Y

= i<>]

Fig. 1. LaMP Networks. Given input x, we encode its components {z1,z2,z3} as
embedded input nodes {z1, 22, z3}. We encode labels {y1, y2, ..., y5} as embedded label
nodes {u},ub,...,ut} of label-interaction graph Gyy. First, MPNN,, is used to pass
messages from the input nodes to the labels nodes and update the label nodes. Then,
MPNNyy is used to pass messages between the label nodes and update label nodes.
Finally, readout function R performs node-level classification on label nodes to make
binary label predictions {§1, g2, ..., J5 }-

6 J. Lanchantin et al.

Updating Label Embeddings via Feature-to-Label Message Passing
Given a particular input with embedded feature components {21, 2o, ..., 25},
the first step in LaMP is to update the label embeddings by passing messages from
the input embeddings to the label embeddings, as shown in the “Feature-to-Label
MP” block of Fig. 1. To do this, LaMP uses neural message passing module
MPNN,, to update the i'" label node’s embedding ! using the embeddings of
all the components of an input.

That is, we update each u! by using a weighted sum of all input embeddings
{#z1.s}, in which the weights represent how important an input component is to
the i*" label node. The weights for the message are learned via Label-to-Feature
attention (i.e., each label attends to each input embedding differently to compute
the weights). In this step, messages are only passed from the input nodes to the
label nodes, and not vice versa (i.e. Feature-to-Label message passing is directed).

More specifically, to update label embedding u!, MPNN,, uses attention
message function MY, on all embeddings of the input {z1.s} to produce mes-

atn
sages m}, and MLP update function Uy, to produce the updated intermediate

embedding state u!:

S

m; :u§+zMatn(u§’zj?ny)v (10)
j=1

w) = m} + Uy (ml; Wiy). (11)

The key advantage of Feature-to-Label message passing with attention is that
each label node can attend differently on input elements (e.g. different words in
an input sentence).

Updating Label Embeddings via Label-to-Label Message Passing

At this point, an independent prediction can be made for each label conditioned
on x using {u’., }. However, in order to consider label dependencies, we model
interactions between the label nodes {uﬁi 1 } using Label-to-Label message passing
and update them accordingly, as shown in the “Label-to-Label MP” block of Fig.
1. Given the exponentially large number of possible conditional dependencies, we
use neural message passing as an efficient way to model such interactions, which
has been shown to work well in practice for other tasks.

We assume there exist a label interaction graph Gy, = (Viy, Eyy), Viy =
{y1.}, and Eyy includes all undirected pairwise edges connecting node y; and
node y;. At this stage, we use another message passing module, MPNNy to pass
messages between labels and update them. The label embedding uf is updated
by a weighted combination through attention of all its neighbor label nodes
{ufeni}

MPNNy, uses attention message function M, u

wn ON all neighbor label em-

beddings {u?E N(i)} to produce mfssage m!, and MLP update function UfIilp to

t+1,

mi = ul + Y Man(ul s Wy), (12)
FEN(3)

compute updated embedding u

Neural Message Passing for Multi-Label Classification 7

UE-H = mg + Umlp(uzt'la m§l§ Wyy). (13)

If there exists a known label interaction graph Gyy, message m! for node
i is computed using its neighboring nodes 7 € N (), where the neighbors N (7)
are defined by the graph. If there is no known Gy, graph, we assume a fully
connected graph, which means N (i) = {j € Vyy} (including 7).
Message Passing for Multiple Time Steps
To learn more complex relations among nodes, we compute a total of 1" time steps
of updates. This is essentially a stack of 7' MPNN layers. In our implementation,
the label embeddings are updated by MPNN,, and MPNNy, for T" time steps to
produce {uf ul .. ul}.

2.3 Readout Layer (MLC Predictions from the label embeddings)

After T updates to the label embeddings, the last module predicts each label
{91, ...91}. A readout function R projects each of the L label embeddings w! using
projection matrix W° € REX? where row W¢ € R? is the learned output vector
for label 4. The calculated vector of size L x 1 is then fed through an element-wise
sigmoid function to produce probabilities of each label being positive:

j; = R(ul; W°) = sigmoid(W?uT). (14)

2.4 Model Details

Multi-head Attention. In order to allow a particular node to attend to multiple
other nodes (or multiple groups of nodes) at once, LaMP uses multiple attention
heads. Inspired by [29], we use K independent attention heads for each W-
matrix during the message computation, where each matrix column W is of
dimension d/K. The generated representations are concatenated (denoted by ||)
and linearly transformed by matrix W? € R%*¢. Multi-head attention changes
message passing function Mae,, but update function U,y stays the same.

el = (Wekoh) T (W™kol) /vd (15)
tk exp(e%k)
ij t,k (16)

2 jeni) exp(eg;)

M, (0], 08 W) = alf Wkl (17)

K
mimete (|| 3 et) 1s)

k=1 LjeN ()

Matrices W, W* WY W’ W’ W€ are not shared across time steps (but
are shared across nodes).

Label Embedding Weight Sharing. To enforce each label’s input embedding
to correspond to that particular label, the label embedding matrix weights WY

8 J. Lanchantin et al.

are shared with the readout projection matrix W?. In other words, WV is used
to produce the initial node vectors for Gy, and then is used again to calculate
the pre-sigmoid output values for each label, so W° = WY, This was shown
beneficial in Seq2Seq models for machine translation [21].

2.5 Loss Function

The final output of LaMP networks g are trained using the mean binary cross
entropy (BCE) over all outputs y;. For one sample, given true binary label vector
y and predicted labels gy, the output loss L, is:

L
Louly zZ (43 1og() + (1 = y:) og(1 —) (19)

The final outputs §; are computed from the final label node states u! (Eq.
14). However, since LaMP networks iteratively update the label nodes from t=20
to T, we can “probe” the label nodes at each intermediate state from t=1 to T-1
and enforce an auxilary loss on those states. To do this, we use the same matrix
W° to extract the intermediate prediction g at state ¢t: g} = R(u!; W°). We use
the same BCE loss on the these predictions to compute intermediate loss L;p;:

L
Lint(y,9") = 7 Z (i log(§}) + (1 — i) log(1 — 9))- (20)

We note that the intermediate predictions §! are computed for both u! (after
Label-to-Label message passing), as well as u i/ (after Feature-to-Label message
passing). The final loss is a combination of both the original and intermediate,
where the intermediate loss is weighted by A:

T-1

Lravp = Lowt(®,9) + XY Lint(y, ") (21)
=1

In LaMP networks, p(y;|{y;zi}, z1.5; W) is approximated by jointly repre-
senting {y1.1,} using message passing from {z1.s} and from the embeddings of
all neighboring labels {y;cnri)}-

2.6 LaMP Variation: Input Encoding with Feature Message Passing
(FMP)

Thus far, we have assumed that we use the raw feature embeddings {z1, z2, ..., zs}
to pass messages to the labels. However, we could also update the feature
embeddings before they are passed to the label nodes by modelling the interactions
between features.

For a particular input @, we first assume that the input features {1;1:5} are
nodes on a graph, Gxx. Gxx = (Vax, Pxx), Vax = {715}, and E includes all

Neural Message Passing for Multi-Label Classification 9

undirected pairwise edges connecting node x; and node ;. MPNN,, param-
eterized by W,y, is used to pass messages between the input embeddings in
order to update their states. Nodes on Gy are represented as embedding vectors
{21, 2%, ..., 2L}, where the initial states {20 ¢} are obtained using embedding ma-
trix W7 on input components {21, za, ..., g }. The embeddings are then updated
by MPNN,, using message passing for T' time steps to produce {zf, zg, e zg}

To update input embedding z!, MPNN,, uses attention message function
(Eq. 6) on all neighboring input embeddings {zjt eN(Z,)} to produce messages
t+1,

i .

Mt

atn

m}, and MLP update function Uy, (Eq. 9) to produce updated embedding z

mﬁ = Z; + Z Matn(zga Z;; WXX)7 (22)
JEN(3)
Zf-‘rl = mz + Umlp(mzv WXX)' (23)

If there exists a known Gyx graph, message m! for node i is computed using its
neighboring nodes j € A/(4), where the neighbors N (i) are defined by the graph.
If there is no known graph, we assume a fully connected Gy« graph, which means
N (i) = {j € Vax}. Inputs with a sequential ordering can be modelled as a fully
connected graph using positional embeddings [3].

In summary, MPNNy is used to update input feature nodes {z} 4} by passing
messages within the feature-interaction graph. MPNN,y, is used to update output
label nodes {u!},; } by passing messages from the features to labels (from input
nodes {2z} ¢} to output nodes {u},;}). MPNNy,, is used to update output label
nodes {u} ;} by passing messages within the label-interaction graph (between
label nodes). Once messages have been passed to update the feature and label
nodes for T integrative updates, a readout function R is then used on the label
nodes to make a binary classification prediction on each label, {g1, g2, ..., 9}
Figure 1 shows the LaMP network without the feature-interaction graph.

2.7 Advantages of LaMP Models

Efficiently Handling Dense Label Predictions. It is known that autoregres-
sive models such as RNN Seq2Seq suffer from the propagation of errors over the
sequential positive label predictions. This makes it difficult for these models to
handle dense, or many positive label, samples. In addition, autoregressive models
require a time consuming post-processing step such as beam search to obtain
the optimal label set. Lastly, autoregressive models require a predefined label
ordering for training the sequential prediction, which can lead to instabilities at
testing time [31].

Motivated by the drawbacks of autoregressive models for MLC, the proposed
LaMP model removes the reliance on sequential predictions, beam search, and
a chosen label ordering, while still modelling the label dependencies. This is
particularly beneficial when the number of positive output labels is large (i.e.
dense). LaMP networks predict the output set of labels all at once, which is made
possible by the fact that inference doesn’t use a probabilistic chain, but there

10 J. Lanchantin et al.

is still a representation of label dependencies via label to label attention. As an
additional benefit, as noted by [4], it may be useful to maintain ‘soft’ predictions
for each label in MLC. This is a major drawback of the PCC models which make
‘hard’ predictions of the positive labels, defaulting all other labels to 0.

Structure Agnostic. Many input or output types are instances where the
relational structure is not made explicit, and must be inferred or assumed [3].
LaMP networks allow for greater flexibility of both input structures (known
structure such as sequence or graph, or unknown such as tabular), as well as
output structures (e.g., known graph vs unknown structure). To the best of our
knowledge, this is the first work to use MPNNSs to infer the relational structure
of the data by using attention mechanisms.

Interpretability. Our formulation of LaMP allows us to visualize predictions
in several different ways. First, since predictions are made in an iterative manner
via graph update steps, we can “probe” each label’s state at each step to get
intermediate predictions. Second, we can visualize the attention weights which
automatically learn the relational structure. Combining these two visualization
methods allows us to see how the predictions change from the initial predictions
given only the input sequence to the final state where messages have been passed
from other labels, leading us to better insights for specific MLC samples.

2.8 Connecting to Related Topics

Structured Output Predictions. The use of graph attention in LaMP models
is closely connected to the literature of structured output prediction for MLC.
[9] used conditional random fields (CRFs) [17] to model dependencies among
labels and features for ML.C by learning a distribution over pairs of labels to
input features, but these are limited to pairwise dependencies.

To overcome the naive pairwise dependency constraint of CRFs, structured
prediction energy networks (SPENS) [4] and related methods [28,13] locally
optimize an unconstrained structured output. In contrast to SPENs which use
an iterative refinement of the output label predictions, our method is a simpler
feed forward block to make predictions in one step, yet still models dependencies
through attention on embeddings, which gives the added interpretability benefit.
Multi-label Classification By Modeling Label Interaction Graphs. [12]
formulate MLC using a label graph and they introduced a conditional dependency
SVM where they first trained separate classifiers for each label given the input
and all other true labels and used Gibbs sampling to find the optimal label set.
The main drawback is that this method does not scale to a large number of labels.
[24] proposes a method to label the pairwise edges of randomly generated label
graphs, and requires some chosen aggregation method over all random graphs.
The authors introduce the idea that variation in the graph structure shifts the
inductive bias of the base learners. Our fully connected label graph with attention
on the neighboring nodes can be regarded as a form of graph ensemble learning
[15]. [8] use graph neural networks for MLC, but focus on graph inputs and do
not explicitly model label the label-to-label dependencies, thus resulting in a
worse performance than LaMP.

Neural Message Passing for Multi-Label Classification 11

Table 1. ebF1 Scores across all 8 datasets

Reuters|Bibtex|Bookmarks|Delicious| RCV1|TFBS|SIDER|NUSWIDE

FastXML [20] - - - - |os41| - - -
Madjarov [18] - |0434| 0257 | 0343 | - - - -
SPEN [4] 0.422| 0344 | 0.375

RNN Seq2Seq [19]| 0.894 | 0.393 0.362 0.320 |0.890|0.249| 0.356 0.329
Emb + MLP 0.854 | 0.363 0.368 0.371 |0.865|0.167| 0.766 0.371

Emb + LaMPg, 0.859 | 0.379 0.351 0.358 |0.868(0.289| 0.767 0.376
Emb + LaMPy. 0.896 | 0.427 0.376 0.368 |0.871]0.319| 0.763 0.376

Emb + LaMP,, 0.895 | 0.424 0.373 0.366 |0.870(0.317| 0.765 0.372
FMP + LaMP¢; 0.883 | 0.435 0.375 0.369 |0.887]0.310| 0.766 -
FMP + LaMPy. | 0.906 | 0.445 0.389 0.372 |0.889(0.321| 0.764 -
FMP + LaMP,,. | 0.902 [0.447 0.386 0.372 |0.887(0.321| 0.766 -

Graph Neural Networks (GNNs). Passing embedding messages from node to
neighbor nodes connects to a large body of literature on graph neural networks [3]
and embedding models for structures [6]. The key idea is that instead of conducting
probabilistic operations (e.g., product or re-normalization), the proposed models
perform nonlinear function mappings in each step to learn feature representations
of structured components. [10, 30, 2] all follow similar ideas to pass the embedding
from node to neighbor nodes or neighbor edges.

There have been many recent works extending the basic GNN framework to
update nodes using various message passing, update, and readout functions [16,
14,2, 10]. We refer the readers to [3] for a survey. However, none of these have
used GNNs for MLC. In addition, none of these have attempted to learn the
graph structure by using neural attention on fully connected graphs.

3 Experiments

We validate our model on eight real world MLC datasets. These datasets vary in
the number of samples, number of labels, input type (sequential, tabular, graph,
vector), and output type (unknown, known label graph). They also cover a wide
spectrum of input data types, including: raw English text (sequential form),
binary word vector (tabular form), drug molecules (graph form), and images
(vector form). Data statistics are in Table 5 and Section 8.1. Due to the space
limit, we move the details of evaluation metrics to Section 8.2 and the hyper-
parameters to Section 8.3. Details of previous results from the state-of-the-art
baselines are in Section 8.4.

3.1 LaMP Variations

For LaMP models, we use two variations of input features, and three variations
of Label-to-Label Message Passing. For input features, we use (1) Emb, which

12 J. Lanchantin et al.

is the raw learned feature embeddings of dimension d, and (2) FMP? which is
the updated state of each feature embedding after 2 layers of Feature Message
Passing, as explained in 2.6. For each of the two input feature variations, we use
three variations of the label graph which Label-to-Label Message Passing uses to
update the labels given the input features, explained as follows.

LaMP,; uses an edgeless label graph and messages are not passed between labels,
assuming no label dependencies.

LaMP,. uses a fully connected label graph where each label is able to attend to
all other labels (including itself) in order to compute the messages.

LaMP,, uses a prior label graph where each label is able to attend to only other
labels from the known label graph (including itself) in order to compute the
messages. For RCV1, we use the known tree label structure, and for TFBS we
use known protein-protein interactions (PPI) from [25]. For all other datasets,
we create a graph where we place an edge on the adjacency matrix for all labels
that co-occur in any sample for the training set. This is summarized in the last
column of Appendix Table 5.

3.2 Performance Evaluation

ebF1. Table 1 shows the most commonly used evaluation, example-based F1
(ebF1) scores, for the seven datasets. LaMP outperforms the baseline MLP models
which assume no label dependencies, as well as RNN Seq2Seq, which models
label dependencies using a classifier chain. More importantly, we compare using
an output graph with no edges (LaMP,;), which assumes no label dependencies
vs. an output graph with edges (LaMPy.). The two models have the same
architecture and number of parameters, with the only thing varying being the
message passing between label nodes. We can see that for most datasets, modelling
label dependencies using LaMP ¢, does in fact help. We found that using a known
prior label structure (LaMP,,) did not improve the results significantly. LaMP s
predictions produced an average 1.8% ebF1 score increase over the independent
LaMP,, predictions. LaMP,, resulted in an average 1.7% ebF1 score increase over
LaMP,;. When comparing to the MLP baseline, LaMP ¢, and LaMP,, produced
an average 18.5% and 18.4% increase, respectively.

miF1. While high ebF1 scores indicate strong average F1 scores over all samples,
the label-based Micro-averaged F1 (miF1) scores indicate strong results on the
most frequent labels. Table 2 shows the miF1 scores, for the all datasets. LaMP s,
produced an average 1.6% miF1 score increase over the independent LaMP,;.
LaMP,, produced an average 1.8% miF1 score increase over LaMP,.;. When
comparing to the MLP baseline, LaMP . and LaMP,, resulted in an average
20.2% and 20.5% increase, respectively.

maF1. Contrarily, high label-based Macro-averaged F1 (maF1) scores indicate
strong results on less frequent labels. Table 2 shows maF1 scores, which show

2 For NUS-WIDE, since we use the 128-dimensional ¢cVLAD features as input to
compare to [8], we cannot use the FMP method.

Neural Message Passing for Multi-Label Classification 13

Table 2. miF1 Scores across all 8 datasets

Reuters|Bibtex|Bookmarks|Delicious| RCV1|TFBS|SIDER|NUSWIDE

FastXML [20] - - - - 0847 - - -
SVM [7] 0.787 | - -

GAML 8] - - 0.333 -
Madjarov [18] - |0462| 0.268 0339 | - - - -
RNN Seq2Seq [19]| 0.858 | 0.384 | 0.329 0.329 [0.884|0.311|0.389 | 0.418
Emb + MLP 0.835 | 0.389 | 0.349 0.385 [0.855(0.218| 0.795 | 0.465

- - - 0.398

Emb + LaMP 0.842 | 0.413 0.334 0.372 |0.858]0.401| 0.797 0.472
Emb + LaMPy. 0.871 | 0.458 0.363 0.379 |0.859|0.449| 0.797 0.470
Emb + LaMP,, 0.877 | 0.462 0.363 0.380 |0.859]0.448|0.798 0.468

FMP + LaMP¢; 0.870 | 0.455 0.355 0.381 |0.877]0.445| 0.795 -
FMP + LaMPy. | 0.886 | 0.465 0.373 0.384 |0.877]0.450| 0.795 -
FMP + LaMP,, | 0.889 [0.473 0.371 0.386 |0.877]0.449| 0.797 -

the strongest improvement of LaMP . and LaMP,,. variation over independent
predictions. LaMP . resulted in an average 2.4% maF1 score increase over the
independent LaMP,;. LaMP,, produced an average 2.1% maF'1 score increase
over LaMP,;. This indicates that Label-to-Label message passing can help boost
the accuracy of rare label predictions. When comparing to Emb + MLP, LaMP ¢
and LaMP,, produced an average 57.0% and 56.7% increase, respectively.

Other Metrics. Due to space constraints, we report subset accuracy in Ap-
pendix (supplementary) Table 7. RNN Seq2Seq models mostly perform all other
models for this metric since they are trained to maximize it[19]. However, for all
other metrics, RNN Seq2Seq does not perform as well, concluding that for most
applications, PCC models aren’t necessary. We also report Hamming Accuracy
in Appendix Table 8, and we note that LaMP networks outperform or perform
similarly to baseline methods, but we observe that this metric is mostly unhelpful.

Metrics Performance Summary. While LaMP does not explicitly model label
dependencies as autoregressive or structured prediction models do, the attention
weights do learn some dependencies among labels (Section 3.3). This is indicated
by the fact that LaMP, which uses Label-to-Label attention, mostly outperforms
the ones which don’t, indicating that it is learning label dependencies.

Speed. LaMP results in a mean of 1.7x and 5.0x training and testing speedups,
respectively, over the previous state-of-the-art probabilistic MLC method, RNN
Seq2Seq. Speedups over RNN Seq2Seq model are shown in Table 3.3.

3.3 Interpretability Evaluation

The structure of LaMP networks allows for three different types of visualization
methods to understand how the network predicts each label. We explain the
three types here and show the results for a sample from the Bookmarks dataset
using the FMP + LaMP ;. model.

14 J. Lanchantin et al.

Table 3. maF1 Scores across all 8 datasets

Reuters|Bibtex|Bookmarks|Delicious| RCV1|TFBS|SIDER|NUSWIDE

SVM [7] 0.468 | - 5 - -
FastXML [20] - ; - - os92| - : :
GAML 8] - - 0.217 - - - 0.114
Madjarov [18] - 0.316 0.119 0.142 - - - -
RNN Seq2Seq [19]| 0.457 | 0.282 0.237 0.166 |0.741|0.210| 0.207 0.143
Emb + MLP 0.366 | 0.275 0.248 0.180 |0.667]0.094| 0.665 0.173

Emb + LaMP,, 0.476 | 0.308 0.229 0.176 |0.680|0.326 | 0.666 0.198
Emb + LaMPy. 0.547 | 0.366 0.271 0.192]0.691]0.362| 0.663 0.203
Emb + LaMP,, | 0.560 | 0.372 0.267 0.192 |0.698]0.365| 0.663 0.196

FMP + LaMP¢; 0.508 | 0.353 0.266 0.192 |0.742]0.368| 0.664 -
FMP + LaMP;. | 0.520 | 0.371 0.286 0.195 |0.743]0.364| 0.668 -
FMP + LaMP,, | 0.517 |0.376 0.280 0.196 |0.740|0.364| 0.664 -

Intermediate Output Prediction. One advantage of the multi step formula-
tion of label embedding updates is that it gives us the ability to probe the state of
each label at intermediate steps and view the model’s predictions at those steps.
To do this, we use the readout function R on each intermediate label embeddings
state u! to find the probability that the label embedding would predict a positive
label. In other words, this is the post-sigmoid output of the readout function
of each embedding R(u!; W°) at each step ¢t = 1,...,T. We note that each step
contains two stages: t.1 is the output after the Feature-to-Label message passing,
and t¢.2 is output after the Label-to-Label message passing. The output after the
second stage of the final step (i.e. T.2) is the model’s final output.

Figure 2 (a.) shows the intermediate prediction outputs from the T" = 2 step
model. On the horizontal axis are a selected subset of all possible labels, with
the red colored axis labels being all true positive labels. On the vertical axis,
each row represents one of the label embedding states in the T' = 2 step model.
Each cell represents the readout function’s prediction for each label embedding’s
state. The brighter the grid cell, the more likely that label is positive at the
current stage. Starting from the bottom, the first row (1.1) shows the prediction
of each label after the first Feature-to-Label message passing. The second row
(1.2) shows the prediction of each label after the first Label-to-Label message
passing. This is then repeated in (2.1) and (2.2) for the second layer’s output
states, where the final output, 2.2 is the network’s final output predictions. The
most important aspect of this figure is that we can see the labels “design”, “html”,
and “web design”, all change from weakly positive to strongly positive after the
first Label-to-Label message passing step (row 1.2). In other words, this indicates
that these labels change to a strongly positive prediction by passing messages
between each other.

Label-to-Feature Attention. While the iterative prediction visualization
shows how the model updates its prediction of each label, it doesn’t explic-
itly show how or why. To understand why each label changes its predictions,
we first look at the Feature-to-Label attention, which tells us the input nodes

Neural Message Passing for Multi-Label Classification 15

Intermediate Predictions at each step

10
Step 2.2: Label-Label MP
Step 2.1: Feature-Label MP
Step 1.2: Label-Label MP
Step 1.1: Feature-Label MP
—
85 s 222 0.5
c-~"5Em
S B3f
3 SEg
= BEL
cE
(a) v 0.0
Step 1.1: Label-to-Feature Attention Step 1.2: Label-to-Label Attention
I n 4 ™ 5w
K fo0ls | | < too\g
© wel
= webdeggg . - - | | - webdesign m -
DUVUEVOENSESCU=C UE QU > VEDUX >>TOUSEYUANC SO £2
oS B eE TEE e R EEI e DE 8552050588 25322
BE§8GOQLEgEE YcEeR5¥ TS P Ragu T wRSESH ghs 3y $ES=y
o2e 50 & T E £35 Gg” ST ¢ 3 35
=56 3 55 @ s 2
H
(b) Features (C) Labels

Fig. 2. (a) Visualization of Model Predictions and Attention Weights Inter-
mediate Predictions: this shows the readout function predictions for each intermediate
state in the two update steps. (b) Label-to-Feature Attention Weights for the
first step of Feature-to-Label message passing (1.1). (¢) Label-to-Label Attention
Weights for the first step of Label-to-Label message passing (1.2).

that each label node attends to in order to update its state (and thus producing
the predictions in Figure 2 (a.)). Figure 2 (b.) shows us which input nodes (i.e.
features) each of the positive label attends to in order to make its first update
step 1.1. The colors represent the post-softmax attention weight (summed over
the 4 attention heads), with the darker cells representing high attention. In this
example, we can see that the “web design” label attends to the “pick”, “smart”,
and “version” features, but as we can see from the first row of Figure 2 (a.),
prediction for the current state of the “web design” label isn’t very strong yet.

Label-to-Label Attention. Label-to-Feature attention shows us the input
nodes that each label node attends to in order to make its first update, but the
second step of the label graph update is the Label-to-Label message passing step
where labels are updated according to the states of all other nodes after the first
Feature-to-Label message passing. Figure 2 (c.) shows us the first Label-to-Label
attention stage 1.2 where each label node can attend to the other label nodes in
order to update its state. Here we show only the Label-to-Label attention for the
positive labels in this example. We then look at the second row of Figure 2 (a.)
which shows the model’s prediction of each label node after the Label-to-Label
attention. The interesting thing to note is we can see many of the true positive
labels change their state to positive after the positive labels attend to each
other during the Label-to-Label attention step, indicating that dependencies are
learned.

Attention weights for the second step ¢ = 2 are not as interpretable since they
model higher order interactions. We have added these plots in Appendix Fig. 3.

16 J. Lanchantin et al.

Dataset Training Testing

Reuters 0.788 (1.5x) [0.116 (2.1x)
Bibtex 0.376 (2.1x) [0.080 (2.1x)
Delicious (3.172 (1.1x) [0.473 (3.2x)
Bookmarks {9.664 (1.2x) |1.849 (1.3x)
RCV1 98.346 (1.2x)|1.003 (1.7x)
TFBS 187.14 (2.5x)(13.04 (4.2x)
NUS-WIDE|3.201 (1.2x) [0.921 (8.0x)
SIDER 0.027 (2.5x) (0.003 (21x)

Table 4. Speed. Each column shows training or testing speed for LaMP in minutes per
epoch. Speedups over RNN Seq2Seq are in parentheses. Since LaMP does not depend
on sequential prediction, we see a drastic speedup, especially during testing where RNN
Seq2Seq requires beam search.

4 Conclusion

In this work we present Label Message Passing (LaMP) Networks which achieve
better than, or close to the same accuracy as previous methods across five metrics
and seven datasets. In addition, the iterative label embedding updates with
attention of LaMP provide a straightforward way to shed light on the model’s
predictions and allow us to extract three forms of visualizations, including
conditional label dependencies which influence MLC classifications.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., et al.: Interaction networks for
learning about objects, relations and physics. In: Advances in neural information
processing systems. pp. 4502-4510 (2016)

3. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Ma-
linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.: Relational
inductive biases, deep learning, and graph networks. arXiv:1806.01261 (2018)

4. Belanger, D., McCallum, A.: Structured prediction energy networks. In: Interna-
tional Conference on Machine Learning. pp. 983-992 (2016)

5. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for
extreme multi-label classification. In: Neural Information Processing Systems

6. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for
structured data. In: International Conference on Machine Learning

7. Debole, F., Sebastiani, F.: An analysis of the relative hardness of reuters-21578.
American Society for Information Science and Technology 56(6), 584-596 (2005)

8. Do, K., Tran, T., Nguyen, T., Venkatesh, S.: Attentional multilabel learning over
graphs-a message passing approach. arXiv preprint arXiv:1804.00293 (2018)

9. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: 14th ACM
international conference on Information and knowledge management

10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. arXiv preprint arXiv:1704.01212 (2017)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Neural Message Passing for Multi-Label Classification 17

Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

Guo, Y., Gu, S.: Multi-label classification using conditional dependency networks.
In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence
Gygli, M., Norouzi, M., Angelova, A.: Deep value networks learn to evaluate and
iteratively refine structured outputs. arXiv preprint arXiv:1703.04363 (2017)
Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584 (2017)

Hara, K., Saitoh, D., Shouno, H.: Analysis of dropout learning regarded as ensemble
learning. In: International Conference on Artificial Neural Networks

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data (2001)

Madjarov, G., Kocev, D., Gjorgjevikj, D., DZeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern recognition 45(9) (2012)
Nam, J., Mencia, E.L., Kim, H.J., Fiirnkranz, J.: Maximizing subset accuracy
with recurrent neural networks in multi-label classification. In: Advances in Neural
Information Processing Systems. pp. 5419-5429 (2017)

Prabhu, Y., Varma, M.: Fastxml: A fast, accurate and stable tree-classifier for ex-
treme multi-label learning. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 263-272. ACM (2014)
Press, O., Wolf, L.: Using the output embedding to improve language models. arXiv
preprint arXiv:1608.05859 (2016)

Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Machine Learning and Knowledge Discovery in Databases

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61-80 (2009)
Su, H., Rousu, J.: Multilabel classification through random graph ensembles. In:
Asian Conference on Machine Learning. pp. 404-418 (2013)

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos,
A., et al.: The string database in 2017: quality-controlled protein—protein association
networks, made broadly accessible. Nucleic acids research p. gkw937 (2016)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for
structured and interdependent output variables. JMLR 6(Sep), 1453—-1484 (2005)
Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3(3) (2006)

Tu, L., Gimpel, K.: Learning approximate inference networks for structured predic-
tion. arXiv preprint arXiv:1803.03376 (2018)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. pp. 6000-6010 (2017)

Veli¢kovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

Vinyals, O., Bengio, S., Kudlur, M.: Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391 (2015)

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: Cnn-rnn: A uni-
fied framework for multi-label image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2285-2294 (2016)
Yeh, C.K., Wu, W.C., Ko, W.J., Wang, Y.C.F.: Learning deep latent space for
multi-label classification. In: AAAIL pp. 2838-2844 (2017)

