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Abstract. Multitask algorithms typically use task similarity informa-
tion as a bias to speed up and improve the performance of learning pro-
cesses. Tasks are learned jointly, sharing information across them, in or-
der to construct models more accurate than those learned separately over
single tasks. In this contribution, we present the first multitask model, to
our knowledge, based on Hopfield Networks (HNs), named HoMTask. We
show that by appropriately building a unique HN embedding all tasks, a
more robust and effective classification model can be learned. HoMTask
is a transductive semi-supervised parametric HN, that minimizes an en-
ergy function extended to all nodes and to all tasks under study. We
provide theoretical evidence that the optimal parameters automatically
estimated by HoMTask make coherent the model itself with the prior
knowledge (connection weights and node labels). The convergence prop-
erties of HNs are preserved, and the fixed point reached by the network
dynamics gives rise to the prediction of unlabeled nodes. The proposed
model improves the classification abilities of singletask HNs on a pre-
liminary benchmark comparison, and achieves competitive performance
with state-of-the-art semi-supervised graph-based algorithms.
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1 Introduction

Multitask learning is concerned with simultaneously learning multiple predic-
tion tasks that are related to one another. It has been frequently observed in
the recent literature that, when there are relations between the tasks, it can be
advantageous to learn them simultaneously instead of learning each task sepa-
rately [7, 11]. A major challenge in multitask learning is how to selectively screen
the sharing of information so that unrelated tasks do not end up influencing each
other. Sharing information between two unrelated tasks can worsen the perfor-
mance of both tasks.

Multitasking thus plays an important role in a variety of practical situations,
including: the prediction of user ratings for unseen items based on rating infor-
mation from related users [32], the simultaneously forecasting of many related
financial indicators [19], the categorization of genes associated with a genetic
disorder by exploiting genes associated with related diseases [15].
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There is a vast literature on multitask learning. The most important lines
of work include: regularizers biasing the solution towards functions that lie ge-
ometrically close to each other in a RKHS [12, 11], or lie in a low dimensional
subspace [3, 26]; structural risk minimization methods, where multitask relations
are established by enforcing predictive functions for the different tasks to belong
to the same hypothesis set [2]; spectral [10, 4] and cluster-based [23, 38] assump-
tions on the task relatedness; Bayesian approaches where task parameters share
a common prior [39, 9, 42]; methods allowing a small number of outlier tasks
that are not related to any other task [40, 8]; approaches attempting to learn the
full task covariance matrix [41, 20]. To our knowledge, no multitask attempts
have been proposed for Hopfield networks (HNs) [21], whereas several studies
investigated HNs as singletask classifier [24, 27, 17, 22]. Indeed, HNs are efficient
local optimizers, using the local minima of the energy function determined by
network dynamics as a proxy to node classification.

In this paper we develop HoMTask, Hopfield multitask Network, an approach
to multitask learning based on exploiting a family of parametric HNs. Our ap-
proach builds on COSNet [6], a singletask HN proposed to classify instances in
a transductive semi-supervised scenario with unbalanced data. A main feature
of HoMTask is that the energy function is extended to all tasks to be learned
and to all instances (labeled and unlabeled), so as to learn the model parameters
and to infer the node labels simultaneously for all tasks. The obtained network
can be seen as a collection of singletask HNs, appropriately interconnected by
exploiting the task relatedness. In particular, each task is associated with a cou-
ple of parameters determining the neuron activation values and thresholds, and
we theoretically prove that in the optimal case, the learning procedure adopted
is able to learn the parameters so as to move the multitask state of the labeled
sub-network to a minimum of the energy. This is an important result, which
allows the model to better fit the input data, since the classification of unla-
beled nodes is based upon a minimum of the unlabeled subnetwork. Another
interesting feature of HoMTask is that the complexity of the learning procedure
linearly increases with the number of tasks, thus allowing the model to nicely
scale on settings including numerous tasks. Finally, a proof of convergence of the
multitask dynamics to a minimum of the energy is also supplied.

Experiments on a real-world classification problem have shown that HoM-
Task remarkably outperforms singletask HNs, and has competitive performance
with state-of-the-art graph-based methods proposed in the same context.

2 Methods

2.1 Problem definition

The problem input is composed of an undirected weighted graph G(V,W ), where
V = {1, 2, . . . , n} is the set of instances and the non negative symmetric matrix
W = (wij) denotes the degree of functional similarity between each pair of nodes
i and j. A set of binary learning tasks C = {ck|k = 1, 2, . . . ,m} over G is given,
where for every task ck, V is labelled with {+,−}. The labeling is known only for
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the subset L ⊂ V , whereas it is unknown for U := V \ L. Moreover, the subsets
of vertices labelled with + (positive) and − (negative) are denoted by Lk,+ and
Lk,−, respectively, for each task ck ∈ C. Without loss of generality, we assume
U = {1, 2, · · · , h} and L = {h + 1, h + 2, · · · , n}. As further assumption, task

labelings are highly unbalanced, that is
|Lk,+|
|Lk,−| � 1, for each k ∈ {1, 2, . . . ,m}.

In the multitask scenario, a m×m symmetric matrix S = skr|mk,r=1 is also given,
where skr ∈ [0, 1] is an index of relatedness/similarity between the tasks ck and
cr, and skk = 0 for each k ∈ {1, 2, . . . ,m}, to learn just from the other tasks.

The aim is determining a set of bipartitions (Uk,+, Uk,−) of vertices in U
for each task ck ∈ C by jointly learning tasks in C, on the basis of the prior
information encoded in G and S. In the following, the bold font is adopted
to denote vectors and matrices, and the calligraphic font to denote multitask
Hopfield networks. Moreover, we denote by WLL and WUU the submatrices of
W relative to nodes L and U , respectively.

2.2 Previous singletask model

In this section we recall the basic model proposed in [6, 13] for singletask mod-
eling, named COSNet, that has inspired the multitask setting presented here.
Essentially, it relies on a parametric family of the Hopfield model [21], where the
network parameters are learned to cope with the label imbalance and the net-
work equilibrium point is interpreted to classify the unlabeled nodes. A COSNet
network over G = 〈V,W 〉 is a triple H = 〈W , λ, ρ〉, where λ ∈ R denotes the
neuron activation threshold (unique for all neurons), and ρ ∈ [0, π2 ) is a param-
eter which determines the two neuron activation (state) values {sin ρ,− cos ρ}.
The model parameters are appropriately learned in order to allow the algorithm
to counterbalance the large imbalance towards negatives (see [13]). The initial
state of a neuron i ∈ V is set to xi(0) = sin ρ, if i is positive, xi(0) = − cos ρ, if
i is negative, and xi(0) = 0 when i in unlabeled. The network evolves according
to the following asynchronous dynamics:

xi(t) =


sin ρ if

i−1∑
j=1

wijxj(t) +
n∑

k=i+1

wikxk(t− 1)− λ > 0

− cos ρ if
i−1∑
j=1

wijxj(t) +
n∑

k=i+1

wikxk(t− 1)− λ ≤ 0
(1)

where xi(t) is the state of neuron i ∈ V at time t. At each time t, the vector
x(t) = (x1(t), x2(t), . . . , xh(t)) represents the state of the whole network. The
network admits a state function named energy function:

E(x) = −1

2

∑
i 6=j

wijxixj + λ

n∑
i=1

xi. (2)

The convergence properties of the dynamics (1) depend on the weight matrix W
and the rule by which the nodes are updated. In particular, if W is symmetric
and the dynamic is asynchronous, it has been proved that the network converges
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to a stable state in polynomial time. As a major result, it has been shown that (2)
is a Lyapunov function for the Hopfield dynamical systems with asynchronous
dynamics, i.e., for each t > 0, E(x(t + 1)) ≤ E(x(t)) and there exists a time
t̄ such that E(x(t)) = E(x(t̄)), for all t ≥ t̄. Moreover, the reached fixed point
x̄ = x(t̄) is a local minimum of (2). Then, a neuron i in U is classified as positive
if x̄i = sin ρ, as negative otherwise. COSNet has also a dynamics control to avoid
trajectories towards trivial equilibrium minima (see [13] for details).

2.3 Multitask Hopfield networks

A Hopfield multitask network, named HoMTask, with neurons V is a quadruple
H = 〈W ,γ,ρ,S〉, where S is the task similarity matrix, γ = (γ1, . . . , γm) ∈ Rm,
ρ = (ρ1, . . . , ρm) ∈ [π4 ,

π
2 )m. The couple of parameters (γk, ρk) is associated

with task ck, for each k ∈ {1, 2, . . . ,m}: by leveraging the approach adopted
in COSNet, for a task ck, the neuron activation values are {sin ρk,− cos ρk},
whereas γk is the neuron activation threshold (the same for every neuron). Such
a formalization allows to keep the absolute activation value in the range [0, 1],
and to calibrate it by suitably learning ρk ∈ [π4 ,

π
2 ). For instance, in presence of a

large majority of negative neurons, ρk close to π
2 would prevent positive neurons

to be overwhelmed during the net dynamics.
The state of the network is the n×mmatrixX = (x(1),x(2), . . . ,x(m)), where

x(k) = (x1k, x2k, . . . , xnk) ∈ {sin ρk,− cos ρk}n is the state vector correspond-
ing to task ck. When simultaneously learning related tasks ck and cr, an usual
approach consists in expecting that the higher the relatedness srk, the closer the
corresponding states. In our setting, this can be achieved by minimizing

‖x(k) − x(r)‖2 ,

for any couple of tasks ck, cr ∈ C, with k 6= r. To this end, we incorporate a term
proportional to

∑
k

∑
r skr‖x(k) − x(r)‖2 into the energy of H, thus obtaining:

EH(X) =

m∑
k=1

E(x(k)
)

+
α

4

m∑
r=1
r 6=k

skr ‖x(k) − x(r)‖2

 , (3)

where E
(
x(k)

)
= − 1

2x
(k)TWx(k) + x(k)T γken, en is the n-dimensional vector

made by all ones, and α is a real hyper-parameter regulating the multitask
contribution. Without the second additive term in brackets, energy (3) would
be the summation of the energy functions of m independent singletask Hopfield
networks, as recalled in the previous section.

By using the equality ‖x(k)−x(r)‖2 = ‖x(k)‖2 +‖x(r)‖2−2x(k) ·x(r) , where
· denotes the inner product, and giving that

m∑
k=1

m∑
r=1
r 6=k

skr
(
‖x(k)‖2 + ‖x(r)‖2

)
= 2
( m∑
k=1

Sk‖x(k)‖2
)
,
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Fig. 1. Topology of H in the case m = 3. Black circles, gray squares and white circles
represent elements of L−, L+ and U respectively. The local topology is the same across
sub-networks H1, H2 and H3, but the labeling varies with the task.

with Sk =
∑m
r=1 skr, the energy (3) can be rewritten as:

EH(X) =

m∑
k=1

E(x(k)
)

+
α

2

(
Sk

n∑
i=1

x2ik −
m∑
r=1
r 6=k

skr

n∑
i=1

xikxir

) . (4)

Informally,H can be thought as m interconnected singletask parametric Hop-
field networks H1 = 〈W ,γ1,ρ1〉, . . . ,Hm = 〈W ,γm,ρm〉 on V , having all the
same topology given by W . In addition, the multitask energy term introduces
self loops for all neurons, and a novel connection for each neuron i ∈ V with i
itself in the network Hr, r ∈ C \ {ck}, whose weight is αskr (see Fig.1). It is
worth nothing that usually in Hopfield networks there are no self-loops; never-
theless, we show that it does not affect the convergence properties of the overall
network.

Update rule and dynamics convergence. Starting from an initial state
X(0) and adopting the asynchronous dynamic, in nm steps all neurons are
updated in random order according to the following update rule:

xik(t+ 1) =

{
sin ρk, if φik(t) > 0

− cos ρk, if φik(t) ≤ 0
(5)

where xik(t+ 1) is the state of neuron i ∈ X in task ck (ik-th) at time t+ 1, and

φik(t) := Aik(t)− θik + αBik(t) (6)
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is the input of the ik-th neuron at time t, whose terms are Aik(t) =
n∑
j=1

wijxjk(t),

θik = γk + αSk

2

(
sin ρk − cos ρk

)
, and Bik(t) =

m∑
r=1
r 6=k

skrxir(t). Aik represents the

singletask input (Eq. (1)), Bik(t) is the multitask contribution, and θik is the
activation threshold for neuron ik, including also the ‘singletask’ threshold. The
form of θik derives from the following theorem, stating a HoMTask Hopfield
network preserves the convergence properties of a Hopfield network.

Theorem 1. A HoMTask Hopfield network H = 〈W ,γ,ρ,S〉 with n neurons
and the asynchronous dynamics (5), which starts from any given network state,
eventually reaches a stable state at a local minimum of the energy function (4).

Proof. Let Eik(t) be the energy contribution to (4) of the ik-th neuron at time
t, with

Eik(t) = −1

2
xik(t)

h∑
j=1

(wij + wji)xjk(t) + γkxik(t)+
αSk

2
x2ik(t)−

α

2
xik(t)

m∑
r=1
r 6=k

(skr + srk)xir(t) .

Let ∆ikE(t+ 1) = Eik(t+ 1)−Eik(t) be the energy variation after updating
the state xik at time t+ 1 according to (5). Due to the symmetry of W and S,
it follows

∆ikE(t+ 1) = −
(
xik(t+ 1)− xik(t)

)(
Aik(t)− γk −

αSk
2

(
xik(t+ 1) + xik(t)

)
+ αBik(t)

)
.

(7)

Since (4) is lower bounded, to complete to proof we need to prove that after
updating xik at time t+ 1 according to (5), it holds ∆ikE(t+ 1) ≤ 0. From (7),
when xik(t + 1) = xik(t) (no neuron state change) it follows ∆ikE(t + 1) = 0.
Accordingly, we need to investigate the remaining two cases: (a) xik(t) = sin ρk
and xik(t+ 1) = − cos ρk; (b) xik(t) = − cos ρk and xik(t+ 1) = sin ρk. In both
cases it holds (by definition of θik) γk+αSk

2

(
xik(t+ 1) + xik(t)

)
= θik.

(a) (xik(t+1)−xik(t)) = (− cos ρk− sin ρk) < 0, and, according to (5), Aik(t)−
θik + αBik(t) ≤ 0. It follows ∆ikE(t+ 1) ≤ 0.

(b) (xik(t+ 1)− xik(t)) = (sin ρk + cos ρk) > 0, and Aik(t)− θik + αBik(t) > 0.
Thus ∆ikE(t+ 1) < 0.

Every neuron update thereby does not increase the network energy, and, since the
energy is lower bounded, there will be a time t′ > 0 from which the update of any
neuron will not change the current state, which is the definition of equilibrium
state of the network, and which makes X(t′) a local minimum of (4). ut
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Learning the model parameters. Considered the subnetworkHL = 〈W LL,γ,ρ,S〉
restricted to labeled nodes L, its energy is:

EHL(L) =

m∑
k=1

EL(l(k))+
α

2

(
Sk
∑
i∈L

l2ik −
m∑
r=1
r 6=k

skr
∑
i∈L

liklir

) , (8)

where L = (l(1), l(2), . . . , l(m)) with components l(k) = (l1k, l2k, . . . , l(n−h)k) be-

longing to the set {sin ρk,− cos ρk}(n−h), and EL
(
l(k)
)

= − 1
2 l

(k)TW LLl
(k)+l(k) ·

γke(n−h).
The given bipartition (Lk,+, Lk,−) for each task ck naturally induces the

labeling l̄
(k)

= {l̄1k, l̄2k, . . . , l̄(n−h)k}, defined as it follows:

l̄ik =

{
sin ρk, if i ∈ Lk,+
− cos ρk, if i ∈ Lk,−

,

and constituting the known ‘multitask’ state L̄ = (̄l
(1)
, l̄

(2)
, . . . , l̄

(m)
).

Given L̄ as known components of a final state X̄ of the multitask network
H = 〈W ,γ,ρ,S〉, the purpose of the learning step is to compute the pair (γ̂, ρ̂)
which makes X̄ an energy global minimizer of (3), the energy function associated
with H. Since our aim is also keeping the model scalable on large sized data,
and finding the global minimum of the energy requires time/memory intensive
procedures, we employ a learning procedure leading L̄ towards an fixed point
of HL, being in general a local minimum of (8). We provide the details of the
learning procedure in the following, showing that such an approach also helps
to handle the label imbalance at each task.

Maximizing a cost-sensitive criterion. When the parameters γ,ρ are fixed, each
neuron ik has input

φLik(γ,ρ) =
∑
j∈L

wij

(
sin ρkχjk − cos ρk

(
1− χjk

))
− θik+

α
∑
r=1
r 6=k

skr

(
sin ρkχir − cos ρk

(
1− χir

))
,

where, for each k ∈ {1, . . . ,m} and j ∈ L, χjk = 1 if j ∈ Lk,+, 0 otherwise. φLik
corresponds to φik of equation (6) restricted to L; to simplify the notation, in the
following φLik is thereby denoted by φik. Since the subnetwork is labeled, it is pos-
sible to define the set of true positive tpk(γ,ρ) = {i ∈ Lk,+|φik(γ,ρ) > 0}, false
negative fnk(γ,ρ) = {i ∈ Lk,+|φik(γ,ρ) ≤ 0}, and false positive fpk(γ,ρ) =
{i ∈ Lk,−|φik(γ,ρ) > 0}, for every task ck. Following the approach proposed
in [16], a set of membership functions can be defined, extending the crisp mem-
berships introduced above:
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TP(i, k,γ,ρ) = f(τφik(γ,ρ)), i ∈ Lk,+
FN(i, k,γ,ρ) = 1− f(τφik(γ,ρ)), i ∈ Lk,+
FP(i, k,γ,ρ) = f(τφik(γ,ρ)), i ∈ Lk,−

(9)

where f : R→ [0, 1] is a suitable monotonically increasing membership function.
For instance f1(x) = 1/

(
1+e−x

)
or f2(x) = 1

2

(
2
π arctg(x) + 1

)
. τ > 0 is a real

parameter. If f is the Heaviside step function, we obtain the crisp memberships.
For example, when f = f1 or f = f2, if i ∈ Lk,+ and τφik(γ,ρ) = 0, if follows
TP(i, k,γ,ρ) = FN(i, k,γ,ρ) = 0.5; if i ∈ Lk,+ and τφik(γ,ρ) → ∞, it follows
TP(i, k,γ,ρ) = 1 and FN(i, k,γ,ρ) = 0. The intermediate cases lead to 0 <
TP(i, k,γ,ρ),FN(i, k,γ,ρ) < 1.

Such a generalization, in a different setting (singletask, multi-category) in-
creased both the learning capability of the model and its classification perfor-
mance [16]. By means of the membership functions (9), we can define the objec-
tive F :

F (γ,ρ) = σ
(
F1(γ,ρ), F2(γ,ρ), . . . , Fm(γ,ρ)

)
, (10)

where Fk(γ,ρ) =

2
∑

i∈Lk,+

TP(i,k,γ,ρ)

2
∑

i∈Lk,+

TP(i,k,γ,ρ)+
∑

i∈Lk,−
FP(i,k,γ,ρ)+

∑
i∈Lk,+

FN(i,k,γ,ρ) and σ is

an appropriately chosen function, e.g. the mean, the minimum, or the harmonic
mean function. The property σ must satisfy is that

F (γ,ρ) = 1 =⇒ F1(γ,ρ) = F2(γ,ρ) = . . . = Fm(γ,ρ) = 1.

By definition, Fk (a generalization of the F-measure) is penalized more by the
misclassification of a positive instance than by the misclassification of a negative
one. By maximizing F (γ,ρ) we can thereby cope with the label imbalance.
To this end, the learning criterion for the model parameters adopted here is
(γ̂, ρ̂) = arg max

γ,ρ
F (γ,ρ), which also leads to the following important result.

Theorem 2. If F(γ,ρ) = 1, then L̄ is an equilibrium state of the sub-network
HL〈WLL,γ,ρ,S〉.

Learning procedure. Denoted by δ = (γ,ρ) the vector of model parameters, this

procedure learns the values δ̂ that maximize eq. (10), that is δ̂ = argmax
δ

F (δ).

Following the approach in [16], we adopt the simplest search method [28], which
employs an iterative and incremental procedure estimating in turn a single pa-
rameter at a time, by fixing the other ones, until a suitable criterion is met (e.g.
convergence, or number of iterations). Thus, the complexity of the learning pro-
cedure just linearly increases with the number of tasks. In particular, fixed an
assignment of parameters (δ1, . . . , δi−1, δi+1, . . . , δ2m), δ̂i is estimated through
δi = argmaxδi F (δ), i ∈ {1, . . . , 2m}. The learning procedure is sketched below:

1. Randomly permute the vector δ, and randomly initialize δ;
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2. Determine an estimate δi of δ̂i with a standard line search procedure for
optimizing continuous functions of one variable, and fix δi = δi;

3. Iterate Step 2 for each i ∈ {1, 2, . . . , 2m};
4. Repeat Step 3 till a stopping criterion is satisfied.

As stopping criterion we used a combination of the maximum number of itera-
tions and of the maximum norm of the difference of two subsequent estimates
δ (falling below a given threshold). As initial test, at Step 2 we simply adopted
a grid search optimization algorithm, where a set of trials is formed for each
parameter, and all possible parameter combinations are assembled and tested.

Label inference. Once the parameters γ̂, ρ̂ have been estimated, we consider
the subnetworkHU = 〈WUU, γ̂, ρ̂,S〉 restricted to the unlabeled nodes U , whose
energy is

EHU (U) =

m∑
k=1

EU(u(k)
)

+
α

2

(
Sk

h∑
i=1

u2ik −
m∑
r=1
r 6=k

skr

h∑
i=1

uikuir

)
,

 (11)

with U = (u(1),u(2), . . . ,u(m)) state of HU , u(k) = (u1k, u2k, . . . , uhk) =

(x1k, x2k, . . . , xhk) ∈ {sin ρ̂k,− cos ρ̂k}h, EU
(
u(k)

)
= − 1

2u
(k)TWUUu

(k) +

u(k)Tθk, and θk = γ̂keh − WULl̄
(k)

is the vector of activation thresholds for
task ck, including the contribution of labeled nodes (which are clamped). In the
case the learned parameters make L̄ a part of global minimum ofH, by determin-
ing the global minimum of HU , it is possible to determine the global minimum of
H (as stated by the following theorem), and consequently the problem solution.

Theorem 3. Given a multitask Hopfield network H = 〈W,γ,ρ,S〉 on neurons
V , bipartitioned into the sets L and U , if L is a part of a global minimum of the
energy of H, and U is a global minimum of the energy of HU = 〈WUU ,γ,ρ,S〉,
then (L,U) is a global minimum of the energy of H.

On the other side, computing the energy global minimum of HU would require
time intensive algorithms; to preserve the model efficiency and scalability, we
run the dynamics of HU till an equilibrium state is reached, which, in general, is
an energy local minimum. Given an initial state U(0), at each time t one neuron
is updated, and in nm consecutive steps all neurons are updated asynchronously
and in a randomly chosen order according to the following update rule:

uik(t+ 1) =

{
sin ρ̂, if φUik(t) > 0

− cos ρ̂, if φUik(t) ≤ 0
, (12)

where uik(t+1) is the state of neuron ik at time t+1, and φUik(t) is the restriction
of φik(t) to U . According to Theorem 1, the dynamics (12) converges to an
equilibrium state Ū of HU , and the predicted bipartition (Uk,+, Uk,−) for task
k is: Uk,+ := {i ∈ U |ūik = sin ρ̂} and Uk,− := {i ∈ U |ūik = − cos ρ̂}.
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Dynamics regularization. As shown by [13], the network dynamics might
get stuck in trivial equilibrium states when input labeling are highly unbalanced
—e.g. states made up by almost all negative neurons. To prevent this behaviour,
they applied a dynamics regularization, with the aim to control the number of
positive neurons in the current state. By extending that approach, and denoted

by pk,+ =
|Lk,+|
|L| the proportion of positives in the training set for task ck, the

following regularization term is added to the energy function EHU (U)

ηk

(
h∑
i=1

(akuik + bk)− hpk,+

)2

, (13)

where ak = 1
sin ρ̂k+cos ρ̂k

, bk = cos ρ̂k
sin ρ̂k+cos ρ̂k

, and ηk is a real regularization pa-

rameter. Since ak and bk are such that (akuik + bk) = 1 when uik = sin ρ̂k, 0

otherwise, the
∑h
i=1(akui + bk) is the number of positive neurons in u(k). The

term (13) is thereby minimized when the number of positive neurons in u(k) is
hpk,+. This choice is motivated by the fact that

hpk,+ = arg max
q

Prob
{
|Uk,+| = q

∣∣∣ L contains |Lk,+| positives
}
,

when U and L are randomly drawn from V —see [13]. By simplifying eq. (13),
up to a constant terms, we obtain the quadratic term:

ηkak

(
ak

h∑
i=1

h∑
j=1
j 6=i

uikujk +
(
2bk(h− 1) + 1− 2pk,+

) h∑
i=1

uik

)
,

which can be included into EU (u(k)) = − 1
2

∑h
i=1

∑h
j=1
j 6=i

w
(k)
ij uikujk+

∑h
i=1 uikθ̃ik,

where θ̃ik = θik + ηkak [2bk(h− 1) + (1− 2pk,+h)] and w
(k)
ij = (wij − 2ηka

2
k). By

adding a regularization term for each task ck, the following energy is derived:

EHU (U) =

m∑
k=1

(
− 1

2
u(k)TW

(k)
UUu

(k)+u(k)T θ̃k+

α

2

(
Sk

h∑
i=1

u2ik −
m∑
r=1
r 6=k

skr

h∑
i=1

uikuir

))

Informally, this regularization leads to a different network topology for each
task, in addition to a modification of the neuron activation thresholds. Never-
theless, since the connection weights are modified by a constant value, from an
implementation standpoint this regularization just need to memorize m different
constant values, thus not increasing the space complexity of the model. As pre-
liminary approach, and to have a fair comparison, the parameters ηk have been
set as for the singletask case [13], that is ηk = β

∣∣ tan
(
(ρ̂k − π

4 ) ∗ 2
)∣∣ , where β

is a non negative real constant. Another advantage of this choice is that we have
to learn just one parameter β, instead of m dedicated parameters.
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2.4 Model complexity

The time complexity of HoMTask depends in turn on the computational com-
plexity of the learning procedure and the network dynamics. The learning pro-
cedure updates at each iteration 2m parameters, and each update requires com-
puting eq. 10 for each of the z possible values of the grid search. Since the
labeling is fixed, the weighted sum of positive and negative neighbors can be
computed offline, thus the update of φLik can be performed in constant time,
allowing computing eq. 10 in O(|L|) time. The time complexity of the learning
procedure is thereby O(mz|L|I), where I is the number of iterations to converge
(Step 4 of learning procedure). The complexity of the network dynamics depends
on the number of iterations needed to converge, and each iteration takes time
O(m|WUU |), where where |T | is the number of non-null entries in the matrix T .
We empirically observed that the network in average converges in few iterations
(less than 10), confirming the notes in [27, 13]. Thus, the overall time complex-
ity is O(mz|L|I + m|WUU |), which is O(mz|L|I + m|U |) when the connection
matrix is sparse, that is when |WUU | = O(|U |).

Finally, the space complexity is O(nm + n2), deriving from the storage of
matrices X and W , which becomes O(nm) when W is sparse.

3 Preliminary results and discussion

In this section we evaluate our algorithm on the prediction of the bio-molecular
functions of proteins, a binary classification problem aiming at associating se-
quenced proteins with their biological functions. Next we describe the experi-
mental setting, analyze the impact on performance of parameter configurations,
and we compare HoMTask against other state-of-the-art graph-based methods.

3.1 Benchmark data

In our experiments we considered the Gene Ontology [5] terms, i.e. the reference
functional classes in this context, and their annotations to the Saccaromyces cere-
visiae (yeast) proteins, one of the most studied model organisms. The connection
matrix W has been retrieved from the STRING database, version 10.5 [35], and
contains 6391 yeast proteins. As common in this context, the GO terms with
less than 10 and more than 100 yeast protein annotations (positives) have been
discarded, in order to have a minimum of information and to avoid too generic
terms —GO is a DAG, where annotations for a term are transferred to all its
ancestors. We considered the UniProt GOA (release 87, 12 March 2018) ex-
perimentally validated annotations from all GO branches, Cellular Component
(CC), Molecular Function (MF) and Biological Process (BP), for a total of 162,
227, and 660 CC, MF, BP GO terms, respectively.

3.2 Evaluation setting

To evaluate the generalization capabilities of our algorithm, we used a 3-fold
cross validation (CV), and measured the performance in terms of Area Under
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the ROC curve (AUC) and Area Under the Precision-Recall curve (AUPR).
The AUPR has been adopted in the recent CAFA2 international challenge for
the critical assessment of protein functions [25], since in this imbalanced setting
AUPR is more informative than AUC [33].

3.3 Model configuration

HoMTask has three hyper-parameters, τ , β and α, and two functions to be cho-
sen: f in eq. (9), and σ in eq. (10). τ , β and α were learned through inner 3-fold
CV, considering also the cases α and β in turn or together clamped to = 0, to
evaluate their individual impact on the performance. A different discussion can
be made for the τ parameter, since in our experimentations best performance
correspond to large values of τ (e.g. τ > 500), thus making the model less sensi-
tive to this choice (the function f becomes a Heaviside function). This behaviour
apparently conflicts with results reported in [16], where typically 0.5 < τ < 2
performed best. However, in that work the authors focused on a substantially
different learning task, i.e. a singletask Hopfield model, where nodes were divided
into categories, and the model parameters were not related to different tasks, but
to different node categories. We still include τ in the formalization proposed in
Section 2.3 because it permits also future analytic studies about the derivatives
of σ, to determine close formulations for the optimal parameters. Further, We
set f(x) = 1

2

(
2
π arctg(x)+1

)
, since this choice in a multi-category context leaded

to excellent results [16], even if different choices are possible (Section 2.3).
On the other side, we tested two choices for σ: the harmonic mean (σ1) and

mean functions (σ2). Furthermore, another central factor of our model is the
computation of the task similarity matrix S, which can be computed by using
several metrics (see for instance [15]), and how to group the tasks that should
be learned together. We employed in this work the Jaccard similarity measure,
since it performed nicely in hierarchical contexts [15, 37, 14], defined as follows:

skr =


∣∣Lk,+ ∧ Lr,+∣∣∣∣Lk,+ ∨ Lr,+∣∣ if Lk,+ ∨ Lr,+ 6= ∅

0 otherwise.

Thus, skr is the ratio between the number of instances that are positive for
both tasks and the number of instances that are positive for at least one task.
The higher the number of shared instances, the higher the similarity (up to 1);
conversely, if two tasks do not share items, their similarity is zero. Due to the
numerous experiments to be carried out, just for this analysis the focus is only
on CC terms, which are less numerous than those in the MF and BP branches,
while showing very similar trends, as shown in the benchmark comparison de-
scribed in next section. Finally, we grouped tasks by GO branch, and by GO
branch and number of positives: in the first case (Branch), all tasks within the
CC branch are learned simultaneously; in the latter one (Card), CC tasks having
10-20 (76 tasks), 21-50 (60), or 51-100 (26) positives have been grouped together.
Both approaches are quite usual when predicting GO terms [31, 14].
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Table 1. Performance averaged across CC terms for different configuration of the
model.

Configuration AUC AUPR
Branch, σ1 0.961 0.439
Card, σ1 0.959 0.439
Card, σ1, α = 0 0.959 0.431
Card, σ1, β = 0 0.810 0.204
Card, σ1, α = β = 0 0.811 0.204
Card, σ2 0.937 0.312

The Table 1 reports the obtained results. First, the two different strategies for
grouping tasks led to similar results in this setting, with the Branch grouping be-
ing experimentally slower because the learning procedure needs more iterations
to converge when the number of parameters increases (due to the max norm
adopted here as stopping criterion). Nevertheless, we remark that no threshold-
ing on the matrix S has been applied in both cases; thus, in the same model even
tasks with small similarities can be included, which in principle might introduce
noise in the learning and inference processes. Consequently, the advantage of
jointly learning a larger number of similar tasks can be compensated by this
potential noise; investigating other task grouping and similarity thresholding
strategies could thereby give rise to further insights about model, which for lack
of room we destine to future study.

Regarding the impact of parameter β, regulating the effect of dynamics reg-
ularization, a strong decay in performance is obtained when no regularization
is applied (β = 0): this confirms the tendency of the network trajectory to be
attracted in some limit cases by trivial fixed points, already observed in the sin-
gletask Hopfield model [13]. In this experiment, the contribution of regularization
is even more dominating, since it allows to double the AUPR performance.

The parameter α, which regulates the multitask contribution in Eq. (3), has
apparently less impact on the performance. Indeed, the performance reduces
just around 2% when α = 0; however, this behaviour should be further stud-
ied, because it can be strictly related to the noise we introduced by grouping
tasks without filtering out connections between less similar task. Thus, further
experiments with different organisms would help this analysis and potentially
reveal novel and more clear trends. It is also important noting that by setting
α = 0, the overall multitask contribution is not cancelled: the learning procedure,
by maximizing criterion (10), still learns tasks jointly, even when the multitask
contribution in formula (9) is removed. For instance, choosing σ equal to the
minimum function would mean learning individual task parameters in order to
maximize the minimum performance (mink Fk) across tasks, even when α = 0.

Finally, the function σ itself seems having a marked impact on the model.
When using the mean function (σ2) the AUPR decreases of around 25% with
respect to the AUPR obtained using the harmonic mean (σ1). To some extent
such a result is expected, since the harmonic mean tends to penalize more the
outliers towards 0, thus fostering the learning procedure to estimate the param-
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eters in order not to penalize some tasks in favors of the remaining ones, which
instead can happen when using the mean function. This preliminary model anal-
ysis suggested to adopt the configuration “Card, σ1” in the comparison with the
state-of-the-art methodologies, which is described in the next section.

3.4 Model performance

We compared our method with several state-of-the-art graph-based algorithms,
ranging from singletask Hopfield networks and other multitask methodologies, to
some methods specifically designed to predicting protein functions: RW, random
walk [30], the classical t-step random walk algorithm, predicting a score corre-
sponding to the probability that a t-step random walk inG, starting from positive
nodes, ends in the node to be predicted; RWR, random walk with restart, since
in RW after many steps the walker may forget the prior information coded in
the initial probability vector (0 for negative nodes 1/|Lk,+| for positive nodes),
RWR allows the walker to move another random walk step with probability
1 − θ, or to restart from its initial condition with probability θ; GBA, guilt-by-
association [34], a method based on the assumption that interacting proteins
are more likely to share similar functions; LP, label propagation [43], a popular
semi-supervised learning algorithm which propagates labels to unlabeled nodes
through an iterative process based on Gaussian random fields over a contin-
uous state space; MTLP, MTLP-inv [14], two recent multitask extensions of
LP, exploiting task dissimilarities (MTLP) and similarities (MTLP-inv); MS-
kNN, Multi-Source k-Nearest Neighbors [29], a method based on the k-Nearest
Neighbours (kNN) algorithm [1], among the top-ranked methods in the recent
CAFA2 international challenge for AFP [25]; RANKS [36], a recent graph-based
method proposed to rank proteins, adopting a suitable kernel matrix to extend
the notion of node similarity also to non neighboring nodes; COSNet, employing
the neuron internal energy at equilibrium to compute node ranking, in order to
properly calculating both AUC and AUPR, as done in [18]. Free parameters for
compared methods have been learned through inner 3-fold cross-validation.

In Table 3.4 we show the obtained results. Our method achieves the high-
est AUPR in all the experiments, with statistically significant difference over
the second top method (RWR) in 2 out of 3 experiments (Wilcoxon signed rank
test, α = 0.05). The performance improvement compared with COSNet is notice-
able, showing the remarkable contribution supplied by our multitask extension.
Interestingly, MTLP and MTLP-inv increase the AUPR results of LP not so
remarkably as HoMTask: this means that the further information regarding task
similarities should be appropriately exploited in order to achieve relevant gains.
RANKS is the third method in all experiments, followed by MTLP(-inv), while
MS-kNN is surprisingly the last method. Our method achieves good results also
in terms of AUC (which however is less informative in this context), being close
to top performing methods (RWR on CC and MF, and MTLP-inv on BP terms).
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Table 2. Performance comparison averaged across GO branches. In bold the top re-
sults, underlined when statistically different from the second top result.

RW RWR GBA LP MTLP MTLP-inv MS-kNN RANKS COSNet HoMTask

AUC
CC 0.954 0.966 0.944 0.964 0.957 0.964 0.790 0.958 0.904 0.959
MF 0.934 0.955 0.931 0.951 0.939 0.953 0.742 0.945 0.859 0.945
BP 0.943 0.959 0.935 0.955 0.947 0.961 0.764 0.949 0.855 0.954

AUPR
CC 0.367 0.437 0.207 0.308 0.343 0.342 0.218 0.398 0.361 0.439
MF 0.199 0.272 0.125 0.201 0.229 0.234 0.090 0.236 0.214 0.291
BP 0.244 0.313 0.145 0.224 0.246 0.250 0.116 0.271 0.241 0.330

Conclusions

We have proposed the first multitask Hopfield Network for classification pur-
poses, HoMTask, capable to simultaneously learn multiple tasks and to cope
with the label imbalance. In our validation experiments, it significantly outper-
formed singletask HNs, and favorably compared with state-of-the-art single and
multitask graph-based methodologies. Future investigations might reveal novel
insights about the model, in particular regarding the choice of the task related-
ness matrix, the task grouping strategy, the multitask criterion to be optimized
during the learning phase, the optimization procedure itself, and the robustness
against different proportions of labeled data.
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