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Abstract. Residual value forecasting plays an important role in many
areas, e.g., for vehicles to price leasing contracts. High forecasting ac-
curacy is crucial as any overestimation will lead to lost sales due to
customer dissatisfaction, while underestimation will lead to a direct loss
in revenue when reselling the car at the end of the leasing contract. Cur-
rent forecasting models mainly rely on the trend analysis of historical
sales records. However, these models require extensive manual steps to
filter and preprocess those records which in term limits the frequency at
which these models can be updated with new data. To automate, im-
prove and speed up residual value forecasting we propose a multi-task
model that utilizes besides the residual value itself as the main target,
the actual mileage that has been driven as a co-target. While combining
off-the-shelf regression models with careful feature engineering yields al-
ready useful models, we show that for residual values further quantities
such as the actual driven mileage contains further useful information.
As this information is not available when contracts are made and the
forecast is due, we model the problem as a multi-task model that uses
actual mileage as a training co-target. Experiments on three Volkswagen
car models show that the proposed model significantly outperforms the
straight-forward modeling as a single-target regression problem.

Keywords: Multi-Task Learning · Residual Value Forecasting · Pricing
· Automotive Industry.

1 Introduction

Forecasting enables key-decision making in many business applications, including
but not limited to fields of lease, loans and insurance. A leasing system in place,
reduces the initial up-front costs of goods for the clients significantly, for example,
automobile leasing. Globally, there has been a surge in the demand of leased
vehicles, and Germany is leading the market with a very high penetration of
operating leases within Europe [13]. The leasing contracts are designed with
respect to the residual value of the vehicle at a point in the future. This stands to
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reason as an overshoot on the estimate would suggest a lower leasing rate leading
to diminishing profits if the vehicle is sold at a lower price after the expiration of
the leasing contract. Vice versa in the case of undershooting the residual value.
Consequently, organizations require a dependable method to forecast residual
values as accurately as possible to manage the risk inherent to their business.

Fig. 1: A sample timeline of depreciation and final residual value of a vehicle.

A residual value forecasting method takes into account various factors such
as the initial mileage set for the vehicle, engine configuration, model launch date,
list price, etc. On the other hand, there could be factors that are more dynamic
in nature as opposed to former which stay static over the leasing period. Actual
mileage a vehicle is driven, damages incurred throughout the leasing period are
factors that are both unknown at the start of a contract and dynamic. However,
it is reasonable to assume that both play an important role in the future residual
value of the vehicle. This paper formulates the vehicle residual value forecasting
problem as a multi-task learning model by defining other than the primary task
of residual value, additional auxiliary tasks of predicting various quantities that
are prone to change in the duration of the lease.

Multi-task learning [2] is a mainstay of numerous machine learning applica-
tions. The intuition behind learning multiple tasks jointly is to learn a richer
shared representation from multiple supervisory tasks than possible from learn-
ing a single task. A rich representation as such can then effectively generalize
to out of sample test data better. Natural Language Processing [12], Computer
Vision [6] and Time Series forecasting [2] domains have benefited from using
multi-task learning strategies.

It is worth noting that although forecasting the residual value is of primary
importance, we can explore additional auxiliary tasks to model the problem
as a multi-task learning problem. These auxiliary tasks solely exist to provide
additional supervision. Specifically, we explore four such tasks, the actual mileage
the vehicle gets driven, as the initial mileage limit at the time of contract is not
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set in stone, the cost of damages it can incur, expected days it takes for the
vehicle leasing company to resale the vehicle and lastly, the expected date of
returning the vehicle as opposed to the initial set date at the time of contract.

This paper foremost tackles the research problem of designing an optimal
machine learning model that caters for multiple tasks. Secondly, an exhaustive
search procedure is applied to determine the feasibility of incorporating one
auxiliary task over another, or possibly multiple together. Third, we validate the
results of multi-task learning by comparing to single task learning objective of
residual values. Our focus in this paper is on deep neural network architectures
to model the task at hand, given that the shared representation between the
tasks could be represented by a hidden layer as opposed to more classic machine
learning models such as Gradient Boosted Decision Trees [3] and Support Vector
Machines [5] where catering for multiple tasks requires considerable alterations.

The rest of the paper is organized as follows. In Section 2, we summarize
the related work. We discuss the problem formulation of the multi-task residual
value forecasting in Section 3. In Section 4, we present and discuss the technical
details of the proposed model. We present the experimental results in Section 5.
Finally, we conclude with discussing possible future work in Section 6.

2 Related Work

This section sketches an overview of prominent methods in automobile residual
value forecasting and secondly works that exploit auxiliary tasks in the light of
multi-task learning. We note the work from [9], where the authors propose an
SVM regression method for automobile residual value forecasting. Model selec-
tion for the method was based on an evolution strategy in favor of a grid search
procedure. The dataset consisted of more than 100,000 samples for a single ve-
hicle model from an anonymous car manufacturer. Interestingly, the dataset had
176 features without any dimensionality reduction. More closely related to our
work is a Neural Network based regression method proposed by [11], which was
tested on 5 different however undisclosed vehicle models. Model selection was
done via an evolutionary algorithm similar to previously noted work. Lessmann
et al. [10] provided a comparative analysis of 19 different regression algorithms
applied to a dataset of 450,000 samples of 6 different vehicle models and report
that Random Forest [1] based regression achieved the optimal results. Further-
more, the authors noted that some car models were difficult to model than
others.

Various approaches have been proposed that fall under the umbrella of multi-
task learning. A survey on multi-task learning could be found in [14]. Pioneering
work in multi-task learning [2] proposed a neural network regression model that
forecast mortality risk. Besides the main target of risk, the authors predicted
for various other correlated attributes that lead to a significant gain in accuracy
over the main task when compared to single task estimation of the same risk
task. Auxiliary tasks have also been explored in but not limited to, Natural
language processing [12] and Computer Vision [6]. An unsupervised auxiliary
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task was defined in [12] that predicted surrounding words together with the main
objective of sequence labeling leading to a multi-task learning framework. The
authors noted that utilizing the auxiliary task encouraged the framework overall
to learn richer features for semantic composition without requiring additional
training data and ultimately leading to consistent performance improvements
on various sequence modeling benchmarks. Work done by Girshick [6] involved
an extensive ablation study that compared the multi-task learning loss of object
classification and bounding box regression to single-task object classification.
The results established the supremacy of the multi-task learning approach.

In light of the above, we propose a multi-task approach to model the residual
value forecasting problem. To the best of our knowledge, our paper is the first to
do so. We show that this not only leads to superior performance when compared
to a variety of standard baselines but also an equally important result that the
proposed method beats the single task learning objective of predicting for the
main task.

3 Problem Definition

Residual value forecasting can be formulated as a multi-task regression problem
where given some car configuration details Xc ∈ Rm and the leasing contract
details Xl ∈ Rq, we need to define a function ŷ : Xc × Xl → R|Y| to predict
a set of target values Y := {y1, y2, ..., y|Y|} after the end date of this leasing
contract, such as the expected mileage to be driven or the expected damage
value. In residual value forecasting, our primary target will be the car’s market
value (Residual value) ymv after the contract end date while the rest of the
targets will act as auxiliary targets A := Y \ {ymv} that will help in improving
the model accuracy and generalization.

4 Proposed Method

Given the car configuration details Xc and the contract details Xl we need to
define the multi-target prediction function ŷ. A good choice for such function
will be a multi-layered neural network that has a feature extraction part with
hard parameter sharing g and a set of independent prediction heads fk for every
available target k as follows:

z = g ([Xc, Xl]; θg) (1)

ŷk = fk (z; θfk) (2)

where z are the extracted latent feature vectors from the contract and car details.
g and f are a series of non-linear fully connected layers with network parameters
θg and θf respectively. The full model architecture is shown in Figure 2.

To optimize the proposed model we have to define a separate loss function
Lyk

for every prediction head and jointly minimize all of them simultaneously
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Fig. 2: The proposed multi-layered architecture for residual value forecasting.
The first part is a multi-layered neural network for feature extraction with hard
parameter sharing and the second part is a set of independent multi-layered
prediction heads for every target value to be predicted.

with adding a specific weight for each target loss as follows:

L(Θ) =

|Y|∑
k=1

αk|yk − ŷk| (3)

For simplicity, we converted all possible target values to continues values and
we used the mean absolute error loss for all targets to avoid any sensitivity with
outliers in the training data.

5 Experiments and Results

In this section, multiple experiments were conducted to evaluate and find the
best architecture and target values for the proposed model. These experiments
aim to answer the following research questions:

RQ1 How many layers of hidden units are needed for the proposed model to
learn and predict the target values?

RQ2 What are the best set of co-targets that will improve the residual value
forecasting accuracy?

RQ3 How well does the proposed model perform in comparison with the cur-
rently employed methodology and other well-known regression models for
residual value forecasting?
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5.1 Dataset

In the following experiments, we used our VWFS business to business sales
propriety dataset which contains around 270k instances of leasing contracts.
The dataset was split into three chronological parts with different train to test
ratios. Each chronological part is further split into chronologically ordered train
and test sets where half of the training set is used for parameter tuning. In the
scope of this work, we only focused on evaluating the models on the primary
trim line (Anchor model) of the top three Volkswagen popular car models which
are Tiguan, Passat, and Golf. To do so, all test sets were filtered to contain only
those models. We made sure that train and test parts are disjoint which means
that any car instance had to be already sold before the end date of the data part
in order to be considered. Detailed statistics of the utilized data parts are shown
in Table 1.

Table 1: Datasets Statistics
Train Period Test Period Train # Test # Train Ratio

Split 1 2002-2014 2015-2019 77980 8702 90.0%
Split 2 2002-2013 2014-2019 54151 22561 75.0%
Split 3 2002-2012 2013-2019 32136 37876 46.0%

5.2 Data Preprocessing

Our first step of data preprocessing was to define the best car configuration and
contract features to be used as input. Regarding the car configuration, we used
all available configurations that don’t contain any personalized data which are
shown in Table 2. These features also contain some expert features that might
affect the residual value but not part of the car configuration details. For the
contract details, we only used the start date, end date, mileage cap per year and
contract term in months.

5.3 Exploratory Analysis

Before applying the experiments to answer our research questions, we did some
exploratory analysis on the given dataset to have better insights. Firstly we
plotted the distributions of all contract types based on their duration term and
mileage cap which are shown in Figures 3(a) and 3(b). The distributions show
that the majority of contracts have duration terms of 36 and 42 months with a
mileage cap ranging from 5 km to 100 km per-year. Secondly, the distribution
of the top popular car models and their list prices were analyzed. Figure 4 (a),
shows that the majority of the instance are Passat and Golf while Tiguan has a
much lower frequency. Figure 4 (b), shows that there is no significant deviation



A Deep Multi-Task Approach for Residual Value Forecasting 7

Table 2: Car Configuration Features
Feature Name Type Expert Feature

Brand Categorical -
Model Description Categorical -
Fuel Categorical -
Engine Categorical -
Engine Description Text -
Registration Date Date -
List Price Float -
Equipements List -
Color Categorical -
Model’s Market Launch Date Yes

in the list price between the three models, however, Golf cars have the lowest
price range because it falls in the compact cars segment.
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Fig. 3: Distribution of contracts’ terms and mileage caps

Finally, we analyzed the correlation between the market value and the con-
tracts’ term and mileage caps for each car model to identify any anomalies or
outliers. Correlation results in Figures 5 and 6, show that a strong correlation
consistently exists between the contract’s term, mileage cap, and the future mar-
ket value. The longer the contract term is, the lower the market value will be.
Also, the market value decreases with increasing the contract’s mileage cap. The
results also show that there is a considerable noise especially in the correlation
between the market value and the contract’s term, however, a trend is still clearly
visible.
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(a) Models (b) List Prices

Fig. 4: Distributions of car models and their list prices

(a) Golf (b) Passat (c) Tiguan

Fig. 5: Correlation between the market value percent and contract’s mileage cap

(a) Golf (b) Passat (c) Tiguan

Fig. 6: Correlation between the market value percent and contract’s term

5.4 Experimental Protocol

For our experimental protocol, we used the last three years of the training part
for hyper-parameters tuning using a grid search. We then fully retrain the model
again on the complete train part and evaluate on the test part using the mean
absolute error metric (MAE). Regarding the grid search, we tested the learn rates
of [0.01, 0.001, 0.0001], the batch sizes of [128, 256, 512, 1024, 2048, 2560], the
loss weights of [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001] and
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number of epochs ranging from 50 to 650. The best found hyper-parameters were
batch size = 2048, Learn rate = 0.001, optimizer =ADAM, αmv = 1.0, αmiles =
0.001, αdamage = 0.005, αsaledate = 0.01 and αreturndate = 0.01 for all data splits.
Best number of epochs were 350 for the first two data splits and 450 for the
third.

5.5 Model Complexity (RQ1)

To tune the model architecture, we applied several experiments on the first data
split using different candidate architectures. We started first by increasing the
number of shared layers and their width while fixing the prediction heads to one
fully connected layer with 16 units. The best candidate shared architecture is
then carried over to test a different number of layers for the prediction heads.
We used Leaky ReLU activation functions in all of our experiments.

The comparison results in Table 3, shows that the error rate decreases by
increasing the number of shared layers until it reaches four layers. Further fine
tuning of the prediction heads has a lesser effect on the error rate which decreased
from 3.73% to 3.70%.

Table 3: Performance Comparison of Different Candidate Architectures
Shared Layers Prediction Layers Mean Absolute Error(%)

128 16 5.22
64 16 5.32
32 16 5.79
128x64 16 6.29
128x32 16 6.21
128x16 16 7.95
128x64x32 16 4.0
128x64x64 16 3.78
128x64x32x16 16 3.74
128x64x32x32 16 3.74
128x64x32x64 16 3.73

128x64x32x64 8 3.71
128x64x32x64 32 3.77
128x64x32x64 32x16 3.83
128x64x32x64 16x8 3.70
128x64x32x64 8x4 4.01

5.6 Comparison Between Possible Co-Targets Values (RQ2)

In this section, an experiment was applied on the first and second data splits to
measure the effect of every co-target value. The co-targets are features that are
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known for the past contracts, however, they are unknown for future contracts.
To illustrate the point, the miles driven (or damage values, etc.) can be known
only when a contract ends, while we want to estimate the residual value at
the moment a contract being signed. For this reason, those features cannot be
utilized as an input in estimating the residual values. As such, we innovate on
treating those features which are available only for the training set (i.e. past
contracts) as co-target variables.

After filtering all predictor features we managed to identify four possible co-
targets to be used for forecasting the market value which are shown in Table
4.

Table 4: Co-Targets Values
Target Name Description Type

Miles The expected actual miles to be driven by the client Float
Damage Value Expected total damage value Float
Sale Date Expected sale date after returning the car Date
Return Date Expected car return date after the contract ends Date

In order to change all targets into continuous values, we had to change the
sale and return dates into a numerical number by using the difference in days
between the contract end date and those target dates. A negative number of
days for such targets will indicate that the car was returned and sold before the
original contract end date.

To have first insights about the candidate co-targets, we plotted their cor-
relation graphs with respect to the market value. Correlation results in Figure
7, show that there is a strong correlation between the total driven mileage and
the market value which means it can be a very good candidate co-target. It also
shows that the correlation of all other targets are very noisy however there exist
a slight trend that indicates they might be useful as co-targets.

Assigning the correct loss weight αk to each co-target is a crucial step in fine
tuning any multi-task learning models [8, 7]. To do so, we conducted a sensitivity
analysis using the first data split on the loss weights of each available co-target
individually. The best-found weights are then used further in combining multiple
co-targets at the same time for the sake of reducing the grid search space over
all possible combinations. The sensitivity analysis results in Figure 8, show that
the model is most sensitive to the Miles as a co-target while changing other
co-targets weights show no significant effect on the model performance.

Table 5 shows the results for comparing the different co-targets and their
effect on the residual value forecasting using the best-found loss weights. Results
show that the highest improvement is achieved by adding the expected miles to
be driven while the rest of the targets have a negligible effect. Adding the damage
along with the miles also has a very small improvement over miles alone, if
neglected, we can safely assume the expected miles alone has the most significant
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(a) Miles (b) Damage

(c) Number of days till return date (d) Number of days till sale date

Fig. 7: Correlation between the market value percent and other co-targets

Fig. 8: Comparison between different loss weights for every avail-
able co-target. We used α=[0.001, 0.0005, 0.0001, 0.00005, 0.00001] for
the miles; α=[0.01, 0.005, 0.001, 0.0005, 0.0001] for the damage; and
α=[0.1, 0.05, 0.01, 0.005, 0.001] for the return and sale dates.
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Table 5: Co-Targets Performance Comparison
Model Mean Absolute Error In Market Value(%)

(2014-2019) (2015-2019)

Single-Task Learning

STL NN 5.57 4.27

Multi-Task Learning

MTL NN (Miles) 3.69 3.71
MTL NN (Damage) 5.64 4.53
MTL NN (Sale Date) 5.41 4.37
MTL NN (Return Date) 5.49 4.29
MTL NN (Miles + Damage) 3.68 3.70
MTL NN (All) 3.70 3.74

effect which is also in line with the results shown in Figure 8. This can be
contributed to the fact that the used damage value is just the total sum and
there is no distinction between different damage types and their effect on the
market value.

5.7 Comparison with Current Methodology and Baselines Models
(RQ3)

In this section we applied multiple experiments on all data splits to compare the
performance of the proposed model against the current residual value forecasting
manual method and other well-known regression models shown below.

Baselines

1. Random Forest Regressor [1]: A well-known ensemble model for regression.
We used a grid search to find the best hyperparameters which are number
of estimators = 100 and max tree depth = 3.

2. XGBoost [4]: A well-know gradient boosted tree model for classification and
regression. A grid search was used to find the best hyperparameters which
are number of estimators = 100, max tree depth = 3 and learn rate = 0.09.

3. STL NN: The single task version of our model
4. Current residual value forecasting method: This baseline is an in-house al-

gorithm designed by the internal residual value management team. It relies
mainly on the trend analysis of previous historical sales record after filtering
any outliers, adding external factors and market indicators. Figure 9, shows
the current workflow of the manual method.

We also compare the results against the Bayes error as we have identical in-
stances that have different market values in the end. This means that the same
vehicle type, with the same configuration (including same color, etc.) was sold
for different prices at the very same day. Such a variance is dependent on car
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dealers’ selling policies and can not be estimated based on the features we have.
This error indicate the best possible accuracy that can be achieved on the given
dataset and it was calculated using the average group value as prediction for all
identical groups in the test set.

Fig. 9: Workflow of the current manual residual forecasting method. In the first
step, regression analysis is done on historical sales record to draw the start
value curves for every car model. Secondly, external factors are added to the
value curves for adjustment. Finally the residual value is measured by using the
adjusted start value curves.

Table 6: Comparison between the multi-task model against other baseline
method in terms of mean absolute error percent in market value

Model Mean Absolute Error In Market Value(%)
(2013-2019) (2014-2019) (2015-2019)

Current Method 5.28 6.02 7.78
Random Forest 5.26 5.59 4.71
XGBoost 5.26 4.45 3.99

Single-Task Learning

STL NN 4.24 5.57 4.27

Multi-Task Learning

MTL NN (Miles) 3.75 3.69 3.71

Bayes Error

- 2.12 2.03 2.01
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Results Table 6 shows the comparison results between the multi-task model
versus all other models. The results show that the multi-task approach provides
a significant decrease in error compared with the single task version and the
improvement over the current forecasting method is ranging from 25% to 50%
in terms of error reduction. The results also show that once an adequate number
of training instances are available, all baseline machine learning models can
provide a competitive accuracy compared with the current manual forecasting
method.

(a) Data Split 1 (b) Data Split 2

(c) Data Split 3

Fig. 10: Distribution of the signed prediction errors
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It is worth noting that the current manual forecasting method takes around
45 man-days to complete the full process by highly skilled domain experts, while
the machine learning models need a couple of minutes to be trained, which is a
significant reduction in execution time and effort.

Error plots in figure 10, show that the signed prediction errors of the multi-
task approach are mostly centered around the zero value with a small standard
deviation especially in the first two data splits. All other models have larger
deviation and they are shifted further away from the zero value. In the third
data split, errors of the multi-task approach are slightly shifted to the negative
part, however, the deviation is still small compared to other models. This can be
contributed to the fact that the third split has the smaller number of training
samples, hence a lower accuracy for all machine learning models.

6 Conclusion and Future Work

In this paper, we proposed a multi-task approach for residual value forecasting
that utilizes the expected mileage to be driven as a co-target. The proposed
model was then compared against the current manual forecasting method and
against well-known off-the-shelf regression models with carefully engineered fea-
tures. Experimental results on the top three popular Volkswagen car models
showed that the multi-task approach significantly outperformed the off-the-shelf
models and the current methodology in terms of accuracy and with a signifi-
cant reduction in execution time compared to the manual method. Results also
showed that with the right set of features and enough training instances, the
off-the-shelf regression model can provide a competitive accuracy to the current
manual methodologies.

In future works, we plan to deploy the model in production to help the
residual value management team in decision making and reducing the manual
effort. We also plan to apply the model on car models with lesser volume and
including extra features that might improve the prediction accuracy such as fuel
price indicators and the Ifo business climate index.
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