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Abstract. Link prediction requires predicting which new links are likely
to appear in a graph. In this paper, we present an approach for link pre-
diction that relies on higher-order analysis of the graph topology, well
beyond the typical approach which relies on common neighbors. We treat
the link prediction problem as a supervised classification problem, and
we propose a set of features that depend on the patterns or motifs that a
pair of nodes occurs in. By using motifs of sizes 3, 4, and 5, our approach
captures a high level of detail about the graph topology. In addition, we
propose two optimizations to construct the classification dataset from the
graph. First, we propose adding negative examples to the graph as an al-
ternative to the common approach of removing positive ones. Second, we
show that it is important to control for the shortest-path distance when
sampling pairs of nodes to form negative examples, since the difficulty of
prediction varies with the distance. We experimentally demonstrate that
using our proposed motif features in off-the-shelf classifiers results in up
to 10 percentage points increase in accuracy over prior topology-based
and feature-learning methods.

Keywords: Link prediction · Motifs.

1 Introduction

Given a graph G(V,E) at time t1, the link prediction problem requires finding
which edges {e 6∈ E} will appear in the graph at time t2 > t1 [24]. Predicting
which new connections are likely to be formed is a fundamental primitive in
graph mining, with applications in several domains. In social media, friend and
content recommendations are often modeled as link prediction problems [4]. Link
prediction has also been used to detect credit card fraud in the cybersecurity
domain [24], to predict protein-protein interactions in bioinformatics [5, 17], for
shopping and movie recommendation in e-commerce [10], and even to identify
criminals and hidden groups of terrorists based on their activities [6].

Traditionally, link prediction models rely on topological features of the graph,
and on domain-specific attributes of the nodes (usually to induce a similarity
function) [7]. Most topological features are based on common neighbors, i.e.,
they rely on the idea of ‘closing triangles’ [30]. More advanced approaches such
as non-negative matrix factorization (NMF) and graph embeddings have also
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been tried recently [27, 42]. However, traditional topological features that rely
on common neighbors, such as the Jaccard index and Adamic/Adar measure [2],
have proven to be very strong baselines which are hard to beat [42].

These traditional features are not only effective, but also efficient to compute,
as they originate from triadic graph substructures. Fortunately, recent develop-
ments in algorithms and systems have improved our ability to efficiently count
motifs with more than three nodes [3, 41]. Given the outstanding results of tra-
ditional topological features, it is natural to look towards more complex features
based on motifs for better predictive power [17, 32, 34]. In this paper, we show
that using features based on higher-order motifs with a carefully designed clas-
sification dataset significantly improves the accuracy of link prediction models.

The present work focuses only on topological features, as node attribute
features are domain- and application-specific, and are orthogonal in scope. As is
common practice, we cast the link prediction problem as a binary classification
task. We train a machine learning model on a sample of node pairs from the
graph, where pairs with an edge between them represent a positive example,
and pairs without an edge represent a negative one [12].

When extracting features, two technical issues deserve particular attention:
how to generate motif features in a way that is consistent between training and
testing, and how to select the negative examples for the dataset. For the first
issue, the common practice is to remove a set of existing edges from the graph
(the positive test set), and then train the classifier on the remaining edges. Here
we propose an alternative based on adding a set of negative examples (non-
existing edges) to the graph when extracting the features. In our experiments,
this variant consistently outperforms the former in terms of accuracy. For the
second issue, we show that distance between nodes in negative examples is an
important factor that should be controlled for when creating a dataset (an under-
appreciated fact in the link prediction literature [44]).

The main contributions of this study are as follows:

• We show that complex topological features based on higher-order motifs are
powerful indicators for the link prediction problem in a variety of domains;

• These features improve the accuracy of standard classifiers by up to 10 per-
centage points over the state-of-the-art;

• We re-examine the common practice of removing existing edges from the
graph to create the classification dataset, and propose an alternative based
on adding negative examples, which provides better accuracy;

• We detail the effect of the distance of the pair of nodes for negative examples
on the classification accuracy.

2 Problem Definition and Preliminaries

Consider graph G(V,Et1) at a given time t1, where V is the set of nodes in the
graph and Et1 is the set of edges that connect the nodes of the graph at that
time. Link prediction aims to find which new edges are likely to appear at time
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t2 > t1, i.e., to predict the set {e : e 6∈ Et1 ∧e ∈ Et2}. We assume G is undirected
and unweighted, and the set of nodes V does not change in time.

While the real application of link prediction involves time, very often testing
prediction algorithms in these conditions is not straightforward, mostly due to
the unavailability of the history of the evolution of the graph structure. There-
fore, in most cases, link prediction is cast as a standard binary supervised classi-
fication task [6]. In this scenario, each data point corresponds to a pair of nodes
(u, v) in a static graph, and the label L(u, v) = 1 if (u, v) ∈ E, else L(u, v) = −1.
The edges in the graph can be used as positive examples, while for negative ex-
amples we can sample pairs of nodes in the graph which are not connected by
an edge. We call these pairs of nodes negative edges.

2.1 Motifs

Motifs are small, connected, non-isomorphic subgraphs which appear in a larger
graph [29, 38]. Each k-motif represents a topological pattern of interconnection
between k nodes in a graph. We denote each motif as ‘mk.n’ where k is the
number of nodes in the motif and n is an ordinal number which identifies the
specific edge pattern in the motif (a list of motifs of sizes 3–5 is available in the
extended version of this paper [1]).

Motifs have been shown to be a powerful graph analysis tool in previous work.
The motif profile, the frequency distribution of the motifs in a graph, is used as
a ‘fingerprint’ of a graph [28]. Therefore, the usefulness of motifs to capture the
macro structure of a graph is well established [43]. However, for our purpose, we
are more interested in their ability to capture the micro structure of the graph
(i.e., the neighborhood).

Counting k-motifs is an expensive operation, as their number grows exponen-
tially in k. However, thanks to recent advances in both algorithms and systems,
we are now able to count k-motifs on graphs with millions of edges for values of
k of 5 or more [9, 41]. We leverage this capability to capture complex topological
features for the link prediction task, and go beyond the simple triangle-based
features that have been traditionally used.

3 Motif Features

The features in our model correspond to the number of occurrences of an edge
(positive or negative) within different k-motifs. That is, for each example edge
in the classification dataset, we enumerate the k-motifs that the edge is part of,
and then count the occurrences of each different motif. In this paper, we use
3-, 4-, and 5-motifs. Motifs of even higher order are prohibitively expensive to
compute for large graphs, and we experimentally demonstrate high prediction
accuracy with k ∈ {3, 4, 5}. There are 2, 6, and 21 motifs for k = 3, 4, and 5,
respectively, and this is the number of features we generate for each k.
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Features

Graph Edge Class m4.1 m4.2 m4.3 m4.4 m4.5 m4.6

0

1

2

3

1-2 Positive 1 0 0 0 0 0

2-3 Negative 1 0 0 0 0 0

Fig. 1: Motif features when positive examples are removed from the graph (RMV).

Features

Graph Edge Class m4.1 m4.2 m4.3 m4.4 m4.5 m4.6

0

1

2

3

1-2 Positive 2 2 4 0 1 0

2-3 Negative 4 1 3 1 1 0

Fig. 2: Motif features when negative examples are inserted into the graph (INS).

3.1 Equal Treatment of Positive and Negative Examples

It is of paramount importance to treat both positive and negative example edges
in the same way with respect to feature extraction, especially when dealing with
the test set. To exemplify why this is important, imagine using k = 3 and not
addressing this issue. The two possible features are then the wedge (or open
triangle) and the closed triangle. Positive edges will have a mix of both features,
but negative edges will never appear in a closed triangle, by construction. Thus,
this way of extracting features leaks information about the class into the features
themselves. This leakage is clearly an issue for the test set, but in order for the
features to be meaningful, we need to apply the same extraction process to both
the training set and the test set.

To solve this issue we have two possible options: (i) remove positive edges
from the motif, which we denote RMV, or (ii) insert negative edges into the motif,
which we denote INS. The former option corresponds to the traditional way of
handling link prediction as a classification task, where a set of (positive) edges
are withheld from the model. The latter is a novel way of handling the feature
extraction that has not been considered previously. It corresponds to asking the
following question: “If this edge was added to the graph, would its neighborhood
look like other ones already in the graph?”

In the first method, RMV, we remove the example positive edges from the
graph and extract the features by looking at motifs that contain both endpoints
of a removed edge. The features for negative edges are computed in a similar
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manner, by looking at the motifs containing both endpoints of the negative pair.
In this case, no modification to the graph is needed for negative edges.

By following this methodology, a number of motifs will never appear as fea-
tures (e.g., fully connected cliques). In addition, an example edge never con-
tributes to producing the motifs that it is part of. An example for k = 4 is
shown in Figure 1. Let green edges be positive examples, red edges be negative
examples, and black edges be part of the graph but not in the classification
dataset (i.e., not sampled). Additionally, dashed edges are removed from the
graph. In this case, positive edge (1, 2) is removed from the graph and negative
edge (2, 3) is sampled but not inserted. Removing edge (1, 2) changes the motifs
in this neighborhood. For example, motifs m4.2 and m4.3 do not appear even
though edge (1, 2) was part of instances of these motifs in the original unmod-
ified graph. After removing edge (1, 2), the only 4-motif that appears is m4.1,
which appears once. Since it contains the nodes in edges (1, 2) and (2, 3), both
edges have a value 1 for feature m4.1.

In the second method, INS, we insert negative example edges into the graph
before extracting and counting motifs. No modification to the graph is needed for
positive example edges. After inserting the negative example edges, we count the
motifs for positive and negative edges in the same way. All motifs can appear as
features, and an example edge contributes to all the motifs it is part of. Figure 2
shows the same example as Figure 1, but now the negative edge (2, 3) is added
to the graph. Each feature of an example edge (positive or negative) corresponds
to a motif which includes the edge itself. As an illustration of extracting motif
features, consider m4.2 and m4.3 in Figure 2. Motif m4.2 occurs twice in the
graph, (0, 1)-(1, 2)-(1, 3) and (0, 2)-(1, 2)-(2, 3). Both occurrences contain edge
(1, 2) while only one contains edge (2, 3), so edge (1, 2) has a value 2 for feature
m4.2 while edge (2, 3) has a value 1. There are four occurrences of motif m4.3 in
the graph, obtained by removing one of the edges (0, 1), (1, 3), (0, 2), or (2, 3).
All of these occurrences include edge (1, 2) but only three include edge (2, 3), so
edge (1, 2) has a value 4 for feature m4.3 while edge (2, 3) has a value 3.

When using the INS method, we insert all of the negative edges in the graph
before doing any feature extraction. Sampling a negative edge in the neighbor-
hood of a positive one changes the extracted features, as shown in Figure 2.
That is, the extracted motifs are not fully independent of the sampling. While
this is not desirable, we verify that the occurrence of these cases in practice is
very rare, so they do not affect the learning process in any significant way.

3.2 Sampling Negative Edges

Another important question, independent of choosing RMV or INS, is how to sam-
ple the edges for the classification dataset. For positive example edges, uniform
random sampling is an adequate solution, given the assumption that no edge is
easier to predict than another. For negative example edges, however, it is easy
to imagine that an edge connecting two nodes in completely different regions
of the graph is less likely to occur than one connecting two nodes in the same
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region. Therefore, the distance between the pair of sampled nodes can play an
important role. For this reason, we choose to control for this parameter.

We sample negative edges based on the shortest-path distance between the
endpoint nodes. We choose to use a mix of nodes with short distances (d ∈
{2, 3}), as these represents the hardest cases. In most of the experiments, we use
a 50/50 split between negative example edges at distance 2 and 3. However, we
also analyze the effect of the distance on classification accuracy by changing the
ratio between these two sub-classes.

When building the classification dataset, we sample an equal number of neg-
ative and positive edges. This decision allows us to use simple classification
measures, such as accuracy, without the issues that arise due to class imbalance.
In a typical graph, most pairs of nodes do not have an edge connecting them, so
the negative class would be much larger than the positive class. However, as we
are only interested in the relative performance of the features, and because we
use off-the-shelf classifiers, we prefer to create a balanced classification dataset.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets. We use three real-world graphs coming from different domains: Ama-
zon, CondMat, and AstroPh. The three graphs are from the Koblenz Network
Collection.1 Table 1a shows basic statistics about these graph datasets.

The first graph represents the co-purchase network of products on Amazon.
It is the graph upon which the “customers who bought this also bought that”
feature is built. Nodes are products, and an edge between any two nodes shows
that the two products have been frequently bought together. The second dataset,
CondMat, represents a subset of authorship relations between authors and pub-
lications in the arXiv condensed matter physics section. Nodes are authors (first
set) or papers (second set). An edge represents that an author has written a
given paper. The third and final dataset, AstroPh, is a collaboration graph. In
particular, it contains data about scientific collaboration between authors in the
arXiv astrophysics section. Each node in the graph represents an author of a
paper, and an edge between two authors represents a common publication.

Experimental Settings. For each graph, we extract a classification dataset
for which we compute features. We extract a uniform sample of edges from each
graph as positive examples. For negative examples, we extract pairs of nodes
from the graph which are at distance 2 or 3 hops. Table 1b shows the number of
examples chosen from each graph. We extract motif features for example edges
by using the Arabesque parallel graph mining framework [41]. We then group by
motif, count the occurrences, and finally normalize the counts to create a feature
vector which represents the motif distribution of the neighborhood of the edge.2

1 http://konect.uni-koblenz.de
2 Code available at https://github.com/GhadeerAbuoda/LinkPrediction.
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Graph |V| |E| Avg. Deg. Diameter

Amazon 334 863 925 872 5.530 47
CondMat 22 015 58 595 3.025 36
AstroPh 18 771 198 050 21.102 14

(a) Basic statistics about the graph datasets.

Graph # Pos. Edges # Neg. Edges

Amazon 20 000 20 000
CondMat 2000 2000
AstroPh 5000 5000

(b) No. of positive and negative edges sam-
pled for the classification datasets.

Table 1: Statistics for the graphs and the classification datasets.

To train the classification models we use the scikit-learn Python library.3 We
train näıve Bayes (NB), logistic regression (LR), decision tree (DT), k-nearest
neighbor (KNN), gradient boosted decision tree (GB), and random forest (RF)
models. All performance results are computed via 10-fold cross-validation.

Baselines. We use two types of baselines. The first type includes traditional
topological features such as triangle closure and paths. We compare our fea-
tures against common neighbors, Jaccard coefficient, Adamic/Adar measure,
Preferential Attachment, rooted PageRank, and Katz index. Of these methods,
PageRank and Katz benefit from inserting negative edges in the graph, so we
use INS with these two methods.

The second type of baseline includes more complex techniques such as matrix
decomposition and deep learning. For matrix decomposition, we use the scores
obtained from a non-negative matrix factorization (NMF) trained on the graph
with positive edges removed (RMV), as commonly done in the literature [27]. We
use the NMF algorithm available in scikit-learn, and use 100 factors for the
decomposition. For deep learning, we compare against a recent state-of-the-art
graph neural network framework for link prediction called SEAL [45]. SEAL uses
subgraph extraction around the example edge to extract latent features, learned
via a neural network. This framework has experimentally outperformed other
existing deep learning methods such as node2vec and LINE [16, 40].

Evaluation Metrics. We evaluate the algorithms via the following metrics:

• Accuracy (ACC): the fraction of examples correctly classified (true positives
and true negatives) over the total number of examples (N), ACC = TP+TN

N .
Given that the classification datasets are balanced, accuracy is a reasonable
measure of performance. Better classifiers obtain higher accuracy.

• Area Under the Curve (AUC): the area under the Receiver Operating Charac-
teristic (ROC) curve from the scores produced by the classifiers. It represents
the probability that a classifier will rank a random positive example higher
than a random negative one. Better classifiers obtain higher AUC.

• False Positive Rate (FPR): the ratio between the number of negative edges
wrongly classified (false positives) and the total number of negative edges,

3 http://scikit-learn.org
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Metric Classifier
Features

k = 3 k = 4 k = 5 Combined

ACC (%)

NB 57.6 52.4 52.7 52.0
LR 56.5 59.4 68.0 64.4
DT 57.6 69.4 70.8 70.6
KNN 51.5 69.9 71.4 71.0
GB 58.0 73.3 76.6 76.9
RF 57.6 71.6 76.3 77.0

AUC
GB 0.58 0.72 0.76 0.76
RF 0.58 0.72 0.76 0.77

FPR
GB 0.11 0.30 0.26 0.27
RF 0.11 0.32 0.27 0.27

RMV

Metric Classifier
Features

k = 3 k = 4 k = 5 Combined

ACC (%)

NB 57.7 57.2 52.7 53.6
LR 62.5 67.7 70.0 67.5
DT 67.9 66.9 69.6 71.0
KNN 63.6 66.0 64.0 65.0
GB 68.2 75.0 76.6 79.4
RF 68.0 74.8 77.0 79.6

AUC
GB 0.69 0.74 0.76 0.80
RF 0.68 0.75 0.78 0.80

FPR
GB 0.25 0.25 0.25 0.18
RF 0.23 0.23 0.21 0.18

INS

Table 2: Classification performance on Amazon for RMV vs. INS.

FPR = FP
FP+TN . This measure is useful to understand the effect of graph

distance of the negative examples. Better classifiers obtain lower FPR.

4.2 Removing Positive Edges vs. Inserting Negative Edges

Table 2 shows the classification results of the two feature extraction methods
(RMV and INS, respectively) on the Amazon dataset (the largest one). We report
the results for all classifiers when using features based only on motifs of size
k = 3, size k = 4, and size k = 5. The last column shows the results when using
all three sets of features together in one feature vector (total of 29 features).

By looking at the difference between the two tables, it is clear that INS con-
sistently has higher accuracy than RMV. The difference grows smaller as we add
more complex features by increasing k. However, for the two best classifiers (GB
and RF), INS still results in approximately 3 percentage points higher accuracy
than RMV, even when using the combined features. The simpler classifiers do not
seem able to exploit the full predictive power of the motif features.

Table 2 also reports AUC and FPR for the two best classifiers. The AUC
and FPR are very similar, and the two classifiers are almost indistinguishable.
As expected, the more complex motif features (i.e., larger k) work better, and
the combination of all three sets of features is usually the best. For ease of
presentation, henceforth we report results only using the RF classifier.

Figure 3 reports the accuracy of RF for both feature extraction methods on
all datasets. The results are consistent with what we already observed: INS is
consistently better than RMV. Interestingly, INS with just 3-motif features per-
forms better than RMV with combined motif features on CondMat and AstroPh.

We perform a statistical test to compare the classification accuracy of the two
methods, INS and RMV. We obtain 100 different samples of the accuracy for each
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Fig. 3: Classification accuracy of a Random Forest (RF) classifier when using
different motif features and different feature extraction methods (RMV vs. INS).

Graph
RMV INS

ACC (%) AUC FPR ACC (%) AUC FPR

Amazon 77.0 0.77 0.27 79.6 0.80 0.18
CondMat 79.0 0.79 0.04 96.0 0.96 0.04
AstroPh 84.0 0.84 0.30 96.5 0.97 0.02

Table 3: Classification performance of a Random Forest (RF) classifier with
combined motif features and different feature extraction methods (RMV vs. INS).

method by training the RF classifier using different seeds for the pseudo-random
number generator. We use Student’s t-test to compare the results, and we are
able to reject the null hypothesis that the two methods have the same average
performance at the p = 0.05 significance level. We conclude that the accuracy
of the RF classifier with INS feature extraction is better than the one with RMV,
and the difference is statistically significant. We return to the reason why the
INS feature extraction method is superior in Section 4.4.

More complex motif features perform better, with the combination of all
motif sizes outperforming each individual size. The latter result might seem sur-
prising, as one would expect the 5-motif features to supersede the smaller ones.
Nevertheless, consider that 5-motif features do not encode positional informa-
tion, i.e., we do not know in which part of the 5-motif the edge appears. Smaller
features can supplement this information to the 5-motif features.

Finally, Table 3 reports ACC, AUC, and FPR for RF on all datasets for
the two different feature extraction methods when using the combined motif
features. The mix of RF, combined motif features, and INS feature extraction is
the one that performs consistently on top. Therefore, we use it when comparing
our proposal with baseline methods in the following section.
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Features Amazon CondMat AstroPh

Common Neighbors 64.6 78.6 81.2
Jaccard Coefficient 61.7 81.1 85.2
Adamic/Adar 61.5 74.7 75.0
Preferential Attachment 55.0 61.2 64.2
Rooted PageRank 53.2 62.0 65.0
Katz Index 60.0 55.0 59.0
Topological Combined 73.0 86.9 87.0

NMF 52.0 54.0 53.5
NMF + Topological Combined 73.0 85.9 89.0
SEAL 69.0 81.3 80.3
SEAL + node2vec Embeddings 62.8 77.2 82.0

Motif Combined (INS) 79.6 96.0 96.5

Table 4: Accuracy of the RF classifier (%) with combined motif features (INS)
vs. baseline classifiers.

4.3 Comparison with Baselines

To compare against the baseline topological features proposed in prior work,
we train a RF on each of these features, and one on the combination of all of
the features. The upper part of Table 4 reports the accuracy of these classifiers.
For comparison, the accuracy of the RF classifier trained on the combined motif
features extracted via INS is reported in the last row of the table. The first four
rows of the table show simple neighborhood-based topological features. The next
two rows show path-dependent topological features. For rooted PageRank, we
use the standard value for the damping parameter α = 0.85. For the Katz index,
we optimize the value of the β parameter and we report the highest accuracy
obtained (for β = 0.1). The accuracy of the topological features is in the range
55–85%. Combining all topological features into one feature vector results in the
best accuracy in all cases. This is expected since each of these features captures
different information about the graph and a powerful classifier such as RF is
able to exploit all of this information. Thus, the Topological Combined row in
Table 4 can be viewed as the best possible accuracy with current state-of-the-art
topological features. However, the motif features achieve much higher accuracy.
Specifically, they are 7 to 10 percentage points better in accuracy, which is
significant given that advanced features extracted via graph embeddings and
deep learning reportedly struggle to beat the traditional topological features [42].

Next, we turn our attention to feature learning methods that allow the model
to determine by itself which features are important for link prediction. As men-
tioned earlier, we focus on two popular approaches: non-negative matrix factor-
ization (NMF) and deep learning. Interestingly, the NMF approach [27] is not
very competitive, as shown in Table 4. We hypothesize that the method requires
more parameter optimization (e.g., tuning the number of factors used and the
regularization parameters). In any case, the gap between NMF and straightfor-
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ward topological features is quite large, which is quite disappointing. Moreover,
adding the NMF features to the topological ones does not improve accuracy by
much (only the AstroPh dataset sees some improvement).

Finally, we compare our model with SEAL [45], a recent link prediction
framework which uses deep learning (graph neural networks). We test the frame-
work with its default hyperparameters. Interestingly, SEAL only achieves around
70% accuracy on Amazon and 80% accuracy on the other two datasets. SEAL
learns on one- or two-hop subgraphs extracted around the tested edge, which is
somewhat equivalent to looking into common neighbors. However, the accuracy
achieved by SEAL is lower than with the combined topological features.

We also test combining the subgraph features with node representations
learned via node2vec [16], as suggested by the authors of SEAL. The accuracy
with the node2vec embeddings does not improve on average, and actually drops
for two of the datasets. One interpretation of these results is that the node2vec
embeddings might actually introduce noise in the node representations, by look-
ing too far into the neighborhoods of the example edges (e.g., the length of the
random walks may not be appropriately tuned).

Thus, the overall takeaway from Table 4 is that RF with motif features is
more accurate than all the baselines, both traditional topological-based ones and
more recent NMF and deep learning ones.

Feature importance. We analyze the motif features that are most predictive
for the classification task. Figure 4 shows the relative importance of the features
as inferred by the RF classifier. In most cases the distribution of feature im-
portance is quite skewed, with a few features constituting the backbone of the
predictive model. The most predictive feature is always a 5-motif one, which is
another indication of the predictive power of deeper structural features. However,
it changes from dataset to dataset, and might be domain specific.

Overall, these results prove the predictive power of higher-order motif-based
features for link formation. The rest of the experimental section is devoted to two
more questions related to motif feature extraction and negative edge sampling.
First, we shed some insight about why INS performs better than RMV. Second,
we show the importance of choosing the right negative examples, an important
factor which has been mostly overlooked in the literature thus far.

4.4 Motif Distribution: RMV vs. INS

Let us now look at the reason why INS outperforms RMV for feature extraction.
Consider that both feature extraction methods change the original motifs of the
graph, as they alter the graph structure during feature extraction. One hypothe-
sis is that the method which alters the structure the least is better, as the motif
patterns it learns are also the closest to the ones found in the original graph.
To test this hypothesis, we compute the motif distribution in the original graph
and in the modified graphs resulting from the modifications done by RMV and
INS (i.e., with a fraction of edges removed or added). We compute the distance
between the motif distribution for k = 3 and k = 4 in the original graph, and
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Fig. 4: Feature importance across the three datasets, as inferred from the Ran-
dom Forest model. In all three datasets the most important feature is a 5-motif,
however the specific motif varies by dataset.

the ones obtained by RMV and INS. We use two different distance functions to
perform the comparison: Earth Mover’s Distance (EMD), and Kullback-Leibler
Divergence (KLD). Table 5 reports the results. If our hypothesis is correct, then
INS should have a smaller distance than RMV. This is indeed the case for two
out of three graphs, for both distance functions, which gives us confidence that
our hypothesis is a step in the right direction. However, AstroPh behaves differ-
ently, with RMV having a smaller distance than INS. Therefore, we cannot draw
a definitive conclusion, and further study is necessary to fully understand the
difference between these two feature extraction methods.

4.5 Effect of Distance on Negative Edges

In this experiment we explore the effect of the distance between the node pairs
that constitute the negative examples on the accuracy of the classifier. For each
graph, we create different classification datasets by varying the composition of
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Graph
EMD KLD

RMV INS RMV INS

Amazon 0.119 0.011 0.007 0.001
CondMat 1.106 0.161 0.533 0.012
AstroPh 0.050 0.529 0.001 0.066

Table 5: Earth Mover’s Distance (EMD) and KL Divergence (KLD) between the
distribution of motifs in the original graph and the one obtained by each feature
extraction method, RMV and INS. A smaller distance indicates that the feature
extraction method is more faithful to the original graph.
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Fig. 5: Classification accuracy and false positive rate as a function of the fraction
of negative examples at distance 2 (vs. distance 3).

the negative class: from containing only negative edges at distance 3 to containing
only negative edges at distance 2. We use the fraction of negative edges of the
sub-class at distance 2 as the independent variable in the plots (the rest of the
edges are at distance 3). We keep the total number of examples fixed to maintain
the balance between positive and negative classes.

Figure 5a shows the classification accuracy for each setting. For both Amazon
and ContMat, the edges at distance 2 are harder to classify correctly, which
produces a significant decline in the accuracy as we increase the fraction of edges
at distance 2. Conversely, the accuracy on AstroPh does not seem affected. The
same pattern can be seen in Figure 5b, which reports the false positive rate. The
figure explains the cause of the decrease in accuracy: as we decrease the average
distance of the negative examples, the classifier produces more false positives.
The higher the fraction of negative examples at distance 2, the higher the rate
of misclassification for the negative class.
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5 Related work

There are two main branches of research that are relevant to the current work:
graph motifs and link prediction.

Graph Motifs. Motifs are patterns of connectivity that occur significantly more
frequently in the given graph than expected by chance alone [43]. Graph motifs
have numerous applications, for example, they have been used to classify graphs
into “superfamilies” [37], and they have been used in combination with machine
learning to determine the most appropriate model for a given real-world net-
work [39]. Palla et al. [31] also show that 4-cliques reveal community structure
in word associations and protein-protein interaction graphs. In several social me-
dia analysis studies [18, 19], graph motif detection and enumeration are used to
characterize graph properties statistically.

The significance of motifs is typically assessed statistically by comparing
the distribution of subgraphs in an observed graph with the one found in a
randomized graph. One of the important reasons why graphs in the real world
have more motif structure than the randomized version is that real-world graphs
are constrained by particular types of growth rules, which in turn depend on the
specific nature of the graph. In this paper, we aim at leveraging this property to
learn which specific motifs are predictive of link presence.

Link Prediction. Prior work on link prediction can generally be classified into
three broad categories: unsupervised methods, supervised methods, and feature
learning methods. Link prediction methods can also be orthogonally classified
by the type of information they rely on: node properties or structural properties
(including motifs).

In most unsupervised methods, a heuristic is used to rank node pairs in the
graph, with a higher rank indicating a higher likelihood of a link existing between
the node pair [13, 26]. The heuristic is typically a similarity measure, and can
be based on application-specific node attributes or on the graph topology.

While node attributes can achieve a high degree of accuracy, they are domain-
and application-specific, and cannot be easily generalized. In contrast, features
based on graph topology are more general and directly applicable to any graph.

Topological features that are used in unsupervised link prediction are typi-
cally related to local (neighborhood) or global (path) properties of the graph.
Neighborhood-based features capture the intuition that a link is likely to exist
between a pair of nodes if they have many common neighbors. The simplest
neighborhood-based feature is to count common neighbors [30]. More advanced
features include some form of regularization of the count, such as the Jaccard
coefficient of the two sets of neighbors, the Adamic/Adar index [2], which dis-
counts the contribution of high-degree nodes, and preferential attachment [8],
which gives a higher likelihood to links between high degree vertices.

Conversely, path-based features look at the global graph structure. A repre-
sentative path-based feature is the Katz index [20], which counts the number of
paths between two nodes, giving a higher weight to shorter paths. Other methods
such as hitting time, commute time, and rooted PageRank use random walks on
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the graph to derive the similarity of two nodes. Global similarity indices typically
provide better predictions than local indices, but are more expensive to compute,
especially in large graphs. For a detailed survey of unsupervised link prediction
methods, see references [15] and [25]. Several studies indicate that unsupervised
methods are fundamentally unable to cope with dynamics, imbalance, and other
complexities of real-world graphs [6, 25]. However, similarity indices can easily
be used by supervised methods as features for a machine learning model.

In supervised methods, link prediction is usually cast as a binary classification
problem. The label indicates the presence or absence of a link between a node
pair. The predictor features are metrics computed from the graph structure or
node attributes which describe the given pair [6, 23, 24, 35].

A key challenge for supervised link prediction is designing an effective set
of features for the task. Some works use simple topological features such as the
number of common neighbors and the Adamic/Adar index [12], while others use
more complex features [11]. For detailed surveys on supervised link prediction
methods, please refer to [6, 14, 24].

Some prior work has used motif-like features for link prediction problems.
For example, Hulovatyy et al. [17] use features extracted from graphlets for
link prediction. Theirs is an unsupervised method that uses a different type of
feature extraction compared to our approach. Graphlet-based features are also
used in [32] for link prediction. However, the focus of that paper is link prediction
in temporally evolving graphs, while we focus on static graphs.

A more sophisticated approach to link prediction is to allow the model to
learn by itself which latent features are important for the link prediction task.
Feature learning methods such as matrix factorization, graph embedding, or
deep learning examine the graph topology to learn a representation that can be
used in machine learning tasks.

Matrix factorization models the graph as an N × N matrix, and then pre-
dicts a link by using matrix decomposition. For example, Menon and Elkan [27]
consider link prediction as a matrix completion problem and solve it using a
non-negative matrix factorization (NMF) method. The basic idea is to let the
model learn latent features from the topological structure of a partially observed
graph, and then use the model to approximate the unobserved part of the graph.
Higher-order network embeddings [33, 34] use a motif-based matrix formulation
to learn a representation of the graph that can be used for link prediction.

Deep learning is another very popular form of feature learning. In particular,
graph convolutional networks (GCNs) have recently emerged as a powerful tool
for representation learning on graphs [21]. Lee et al. [22] propose a GCN tech-
nique that uses motif information to improve accuracy in classification tasks.
GCNs have also been successfully used for link prediction [36, 45]. For example,
SEAL [45] is a framework which fits a graph neural network to small subgraphs
around the example edges in the dataset. By doing so, it learns latent features
in the neighborhood structure of the graph which indicate the presence or ab-
sence of a link. Therefore, it is very similar in spirit to the current work. In this
paper, we compare with NMF and SEAL as examples from the class of repres-
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ntation learning techniques, and we show that our method outperforms these
more complex methods.

6 Conclusion

We presented a new approach for link prediction in undirected graphs that relies
on using the distribution of k-motifs that a pair of nodes appears in to predict
whether a link exists between these two nodes. We pointed out two issues re-
lated to the task that were not adequately addressed by prior work. First, it is
important to treat positive and negative example edges in the same way. Prior
approaches achieve this by removing positive example edges from the graph,
and we showed that an alternative (and better) way is to insert negative exam-
ple edges in the graph. Second, when sampling pairs of nodes to find negative
example edges, the shortest-path distance between the sampled nodes affects pre-
diction accuracy, with shorter distances increasing the difficulty of the problem.
Thus, it is important to control for this parameter when building the classifica-
tion dataset. Finally, we showed that, by using off-the-shelf classifiers, our motif
features achieve substantial improvement in prediction accuracy compared to
prior methods based on topological features or feature learning.
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