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Abstract. The increase in the amount of data collected in the trans-
port domain can greatly benefit mobility studies and help to create high
value-added mobility services for passengers as well as regulation tools
for operators. The research detailed in this paper is related to the de-
velopment of an advanced machine learning approach with the aim of
forecasting the passenger load of trains in public transport. Predicting
the crowding level on public transport can indeed be useful for enrich-
ing the information available to passengers to enable them to better plan
their daily trips. Moreover, operators will increasingly need to assess and
predict network passenger load to improve train regulation processes and
service quality levels. The main issues to address in this forecasting task
are the variability in the train load series induced by the train schedule
and the influence of several contextual factors, such as calendar informa-
tion. We propose a neural network LSTM encoder-predictor combined
with a contextual representation learning to address this problem. Ex-
periments are conducted on a real dataset provided by the French railway
company SNCF and collected over a period of one and a half years. The
prediction performance provided by the proposed model are compared
to those given by historical models and by traditional machine learn-
ing models. The obtained results have demonstrated the potential of the
proposed LSTM encoder-predictor to address both one-step-ahead and
multi-step forecasting and to outperform other models by maintaining
robustness in the quality of the forecasts throughout the time horizon.

Keywords: Machine learning · Time series forecasting · Representation
learning · Mobility data · Transport · Train load.

1 Introduction

In recent years, the population growth in metropolitan areas has led to over-
crowding on trains. Transport operators are working on enriching real-time pas-
senger information systems by providing passengers with train loads in addition
to train schedules. This information can allow passengers to better plan their
daily trips, which can improve overall comfort and avoid overcrowding on trains.
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Moreover, such forecasting can be used by public transport authorities and trans-
port operators either to enrich public transport route planning or to improve the
synchronization of train traffic with passenger flows. Transport operators will in-
creasingly need to assess and predict network passenger load to improve train
regulation processes and service quality levels.

The development of smart technologies and the rapid growth in data stor-
age abilities have increased the availability of massive transport data, such as
passenger affluence, train load, real-time train schedules and so forth. This in-
crease in data contributes to leveraging the developments in data mining and
machine learning approaches for processing such spatio-temporal data to extract
valuable information with the aim of providing better services to passengers or
to match the transport supply with the demand. This paper addresses the fore-
casting of train load at a railway station considering a historical dataset that
includes two data sources: train load data and automatic vehicle location. The
latter source contains all information related to the train operation (delay, time
of arrival/departure of vehicles and so on). Most of the prediction problems in
this domain address the prediction of passenger affluence at an aggregated level
(per 15 minutes or 30 minutes time horizon)[1][2][3]. In contrast to these studies,
we focus here on the prediction at the non-aggregated level, taking into account
real-time train schedules. This induces variability in the time step of the time
series that we should predict. Furthermore, the prediction model has to take con-
textual factors impacting train load into account, such as calendar information
(day, time, holiday and so forth) and train operation.

We address this prediction task as a multi-step short-term forecasting prob-
lem on irregularly structured times series influenced by several contextual fac-
tors. We work at the station level for each passage of train, which involves a
temporal variability, making difficult the application of techniques that usually
exploit structure regularity of time series. To handle these specificities, we rely on
the abstraction capabilities of neural networks linked to the concept of represen-
tation learning [4]. The underlying idea is to build a mobility representation of
our known influential factors. The model takes the form of an encoder-predictor
neural network architecture associated with representation learning on contex-
tual factors. It aims to predict the train load of the next trains of a station from
the values of the last trains and all the contextual features characterizing these
trains.

This paper is organized as follows. Section 2 is devoted to related work con-
ducted on prediction models dedicated to public transport demand forecasting
and on some main works on deep neural networks. In Section 3, we detail the
case study that we consider and our dataset. Section 4 presents the proposed
methodology formulated in a general framework. The evaluation of the proposed
model is then conducted in Section 5 through different experiments, aiming to
compare the performance of the proposed model to those provided by four base-
line models on the one hand and to illustrate the learning representation space
of the network on the other hand. Section 6 concludes the paper.
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1.1 Related work

Numerous studies have addressed the mining of large-scale mobility data for
exploration, clustering or prediction purposes. Depending on the available data,
on the scale of analysis and on the targeted goal, different types of methodologies
can be distinguished. For example, the authors in [5] propose predicting crowding
levels from automated fare collection data by using simple techniques based on
historic aggregates. Models proposed in [6] take the form of an neural network
architecture using feature engineering capturing daily and monthly trends to
perform daily passenger demand forecasting. The study conducted in [7] explores
the viability of building a fare-recommendation system for public transport to
avoid incorrect fares. For this purpose, the authors propose a two-step approach:
predicting future travel habits and then matching travel habits to fares.

Extensive research on predictive models in the transport domain has been
conducted. Most of the works address the prediction of passenger flows. In [8],
the authors propose a deep neural network model to forecast passenger demand
related to an on-demand ride service station. The combination of convolutional
layers with LSTM layers allows taking spatial, temporal and exogenous depen-
dencies into account. An LSTM recurrent neural network was proposed in [1]
to address the short-term forecasting of passenger flows in a transport network.
The authors in [9] work on short-term subway ridership prediction by means of
a gradient boosting decision tree model. On the basis of smart card data, the
authors build a prediction model using both temporal features (time and cal-
endar) and historical data related not only to subway activities but also to bus
transfer activities. Following the same line of research, the authors in [10] exam-
ine causal relationships between the adjacent flows on a public transport station
with transport service features. The proposed methodology, which is based on a
dynamic Bayesian network, allows highlighting such causalities and performing
the prediction. Recently, the authors in [11] formalized the problem of tram load
passenger prediction as a classification task, where the passenger load is labelled
into different classes depending on the percentage of occupied seats. Once this
labelling is performed, the authors build classical machine learning classifiers,
such as k-nearest-neighbours, multi-layer perceptron, grading boosting decision
tree and random forest, to predict the level of crowding in the transport. Here,
temporal and historical data were used as model inputs.

Advanced machine learning models, particularly deep learning models, have
also recently been proposed to address forecasting problems. Recurrent neural
networks [12] are potential tools capable of capturing the dynamics of the time
series. These models have even been extended to handle regular spatio-temporal
data by [13] with a convolutional LSTM for weather prediction. In parallel, early
research work has been accomplished by [14]. The authors propose a recurrent
neural network encoder-decoder for a statistical machine translation system.
This model is capable of capturing both semantic and syntactic structures of
phrases. Considering the spatio-temporal dependencies in the forecasting, [3]
proposes a dynamical spatio-temporal neural network for forecasting the time
series of spatial processes. The idea investigated in this model is to learn both
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temporal and spatial dependencies between the series to be predicted through
a combined use of a latent embedding structured by the temporal dynamics of
the series and a decoder mechanism to make the prediction. In [2], the authors
work on forecasting the flow of crowds in all regions of a city by means of a deep-
learning-based model. Historical trajectory data, weather and events are used to
build the model. Residual neural networks and a parametric fusion mechanism
are employed to design the forecasting model of crowd traffic.

Focusing on the transport domain, most of the aforementioned research works
propose achieving the load/affluence prediction using classical classification or
regression machine learning models. These models do not allow fully exploiting
the sequential structure of the time series to be predicted. Moreover, they do not
consider variability in time steps of the data, as it is the case here. The flexible
transportation schedule, the variability in transport demand, and the contextual
factors lead to complex dynamics of the series that the model should capture.

To address the structural variability in the passenger load series and influence
factors, we rely on the abstraction capabilities of deep neural network models
linked to the concept of representation learning [4]. The underlying idea is to
learn a meaningful representation of mobility flows taking contextual factors
into account. The proposed model takes the form of an RNN encoder-decoder
neural network [14] associated with the representation learning of contextual
factors. It aims to predict the passenger load of the next trains at a station from
measures of the last trains and all the contextual features characterizing all of
these trains at the same station. Note that the experiments will be performed
on a real dataset collected over a long period (one and a half years), which leads
to a robust evaluation of the models. Before detailing the proposed model, the
next section will describe the real dataset used in the experiments.

2 Data description

Our study focuses on a dataset collected from a French railway line that serves
approximately fifty stations located in the northern area of suburban Paris.
The railway line carries approximately 250,000 passengers daily. The dataset
covers a period of 18 months from January 2015 to June 2016 on 40 stations
for daytime exploitation from 5 am to 2 am of the next day. It includes both
timetable information and count data of passengers boarding and alighting at
each station collected by radar sensors on trains (2000000 records covering 86%
of trains). These heterogeneous sources of data that have been enriched with
calendar information enable us to reconstruct the passenger load on each train
departing from a station.

The main goal of this study concerns the forecasting of univariate train load
series for each station. To have an idea of the time series to be predicted, Figure
1 shows an example of weekday and weekend daily train passenger load profiles
collected from two stations. The suburb station accounts for approximately 22000
train stops with a particularity low train frequency and few train routes that
serve this station. Conversely, the inner-city station accounts for approximately
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84000 train stops with an important train frequency and multiple train routes
that serve the station. Figure 1 provides insights on the forecasting problem to
be solved and highlights the particularities of our dataset, namely:

– A variable sampling period due to the train timetables and railway operation.
Each station has its own train frequency evolution.

– A specific temporal behaviour of each time series, which was found to be
linked to the spatial location of public transport stations and geographical
aspects of the city (population & employment densities, leisure and so forth).

– Train load series are impacted by calendar factors such as the type of day
(weekday or weekend), holiday, public holiday and so on.

– Train load series are also impacted by train characteristics that are closely
linked to their services (multi-destination line, various train services).

In addition to these contextual factors, public transport demand and there-
fore train load passengers can also be impacted by events (social, cultural, sport
and so forth). The time series forecasting model has to face all the temporal,
spatial and exogenous factors listed above. In this paper, a prediction model
will be built for each railway station. The next section details the methodology
developed to achieve this prediction task.

Fig. 1. Train loads in year 2015 per hour on suburb and inner-city stations

3 LSTM Encoder-Predictor

In this section we formalize the application of the recurrent encoder-predictor ar-
chitecture to our particular structural constraints: a train sequence with variable
time steps and heterogeneous attributes. Let (y1,..,yt) denote the sequence to be
predicted, where yt corresponds to a passenger train load in the same station,
t referring to the trains arrival order. It is assumed that each realization yt is
associated with an observation St which includes contextual features et and past
measures mt. We have tackled the issue of the variability of the time between
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consecutive trains by encoding it as a contextual feature associated with specific
coefficients in the model. We also use the notation yI , SI , eI and mI to designate
the subsequences (yt)t∈I , (St)t∈I , (et)t∈I , (mt)t∈I with I ⊂ [1;T ]. Given a time
window Wi = [i−k, i+k′] composed of a past horizon Pi = [i−k, i[ and a future
horizon Fi = [i, i+k′], the goal of our multi-step forecasting approach is to infer
a realization on the horizon yFi

from information available on SWi
as shown in

Figure 2. Table 1 summarizes the notation used in this article.

Fig. 2. Illustration of notations used in the forecasting model

This forecasting is particularly challenging because it asks to understand the
laws behind realizations (yt) taking into account the multiple influencing factors.
The model must be able to dissociate the influencing factors on a structurally
irregular sequence by exploiting the contextual attributes. Following the line of
research on the RNN encoder-decoder proposed by [14], we propose a neural
network LSTM encoder-predictor for short-term multi-step prediction including
a representation learning of the contextual factors.

3.1 Method description

Given observations on a time window SWi
. It aims to reconstruct the k last re-

alizations ŷPi
and to predict the k′ next realizations ŷFi

considering contextual
information ePi and measure information mPi on past horizon and contextual
information eFi on future horizon. It is a deep neural network that can be decom-
posed into sub-parts with specific roles. A general illustration of the proposed
model is given in Figure 3. The arrangement of the different components of the
LSTM are detailed in Figure 4. The sub-parts of the proposed architecture are
described as follows.

LSTMEP (Xi) = LSTMEP (mPi
, ePi

, eFi
) = (ŷPi

, ŷFi
) (1)
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Table 1. Notation and variable

Notation

t A time step t ∈ [1, T ]
y1, ..., yT (yt) Realization series
S1, ..., St (St) Observation sequences
e1, ..., eT (et) Sequence of feature contextual vectors
m1, ...,mT (mt) Sequence of feature measure vectors

Windows

Wi [i− k, i + k′] : Window associated to the ith observation
Pi [i− k, i[: Past horizon of window Wi

Fi [i, i + k′] : Prediction horizon of window Wi

Xi (mPi , ePi , eFi) Input features from the window Wi

Latent space (see subsection 3.1)

u1, ..., uT (ut) Contextual representation
h1, ..., hT (ht) Latent past dynamic
r1, ..., rT (rt) Latent reconstruction state
z1, ..., zT (zt) Latent prediction state

Model and sub-part

LSTMEP Neural network model
Fact MLP factoring contextual features
Enc Recurrent encoder of past observation
Dec Recurrent decoder of past observation.
Pred Recurrent predictor of future observation
Reconst MLP to reconstruct past realizations
Predict MLP to predict future realizations

Fig. 3. General architecture of the LSTM encoder-predictor network



8 K. Pasini et al

Fact : A context factory is dedicated to synthesize contextual features (et)
as contextual representation (ut). It is a preprocessing multilayer perceptron
applied on each observation to regularize contextual representations.

Fact(ePi , eFi) =
⊕

t∈(Pi∪Fi)

Fact(et) =
⊕

t∈(Pi∪Fi)

ut = (uPi , uFi) (2)

Enc : A many-to-one LSTM ’encoder’ is dedicated to capture a past latent dy-
namic (hi) from the past measures mPi and the past contextual representations
(uPi).

Enc(mPi
, uPi

) = hi (3)

Dec : A many-to-many LSTM ’decoder’ decodes recurrently latent reconstruc-
tion states rPi

of past observations from latent dynamics of the past horizon
(hi). Each latent reconstruction state is then interpreted by ’Reconst’, a linear
reconstruction layers that infer past observation realization. From ’Reconst’
outputs we get ŷPi . These outputs are used as an intermediate objective during
the training phase to facilitate capture of past latent dynamics.

Dec(hi) = rPi
(4)

Reconst(rPi
) =

⊕
t∈Pi

Reconst(rt) = ŷPi
(5)

Enc and Dec form an encoder-decoder structure that synthesizing the dy-
namics of past observations from theirs contextual and measurement features.

Pred : A many-to-many LSTM ’predictor’ infers latent prediction states (zFi)
of future observations from their contextual representations (uFi

) taking into
account the latent dynamics of the past horizon (hi). Each latent prediction
state is then interpreted by ’Predict’, a linear prediction layers that infer future
observation realization. From ’Predict’ outputs we get ŷFi

which corresponds
to the multi-step prediction aim.

Pred(hi, uFi) = zFi (6)

Predict(zFi
) =

⊕
t∈Fi

Predict(zt) = ŷFi
(7)
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Fig. 4. Details on the layout of the LSTMs

Note that since the model is designed to address variability in the time step,
this makes it straightforward to remove observations of the dataset due to miss-
ing data. Moreover, once the LSTM encoder-predictor is trained, predictions can
be performed on missing data in the future horizon if we are able to reconstruct
contextual information.

3.2 Optimization

A deep neural network is trained through end-to-end gradient back-propagation
by minimizing the following loss function:

L(θ) = αp ∗
∑
t∈Pi

||yt − ŷt||2 + αf ∗
∑
t∈Fi

||yt − ŷt||2,

With θ = (θFact, θEnc, θDec, θPred, θReconst, θPredict).

(8)

The first term measures the ability of the model to reconstruct the past
observations from the latent past dynamics. It is an intermediate objective that
facilitates the learning of the past dynamics. The second term measures the
prediction ability of the model. Hyper-Parameters αp and αf are the weights of
the reconstruction and prediction objectives.

For the learning phase, we realize mini-batch optimization thanks to a Nadam
optimizer [15]. Two gradients (prediction and reconstruction) are propagated
from their output layers (Predict and Reconst) to the upstream layers towards
the context factory through LSTM layers. The encoder-predictor is implemented
based on the TensorFlow [16] environment and Keras [17] as a library and high-
level neural network API.

The parameters have been chosen empirically after several experiments based
on model performance and learning convergence. Fact is composed of 3 dense
layers of size [50, 100, 200] with a sigmoid activation function for a total of 27000
parameters. Enc, Dec, and Pred are 3 LSTM layers of size 200 with a sigmoid
activation function for a total of 880000 parameters. Reconst and Predict are
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composed of 2 dense layers of size [100, 1] with a linear activation function for a
total of 40000 parameters. The whole neural network has approximately 900,000
parameters.

Training is empirically realized on a batch of size 128 on several thousand
iterations, which takes few hours on one standard GPU card depending on the
dataset and time depth. Further work on the choice of parameters is required to
improve the convergence.

4 Experimental results and discussion

For the experimental part, we evaluate two models for train load forecasting,
each one on a given dataset respectively related to a station situated in the
suburb and in the inner city. The datasets concern the period from January
2015 to June 2016, and they are split into training (year 2015 ≈ 66% ) and test
sets (year 2016 ≈ 33%). Both models use several contextual information et as
long-term (calendar) features:

– Day of the year (8-dimensional): Position of the day in the year (365 possible
values) encoded by cosine and sine of (2 ×4) frequencies.

– Day type (8-dimensional): Position of the day in the week with an additional
attribute if the day corresponds to a holiday or not.

– Minutes (8-dimensional): Minute of the day (1440 possible values) encoded
by cosine and sine of (2×4) frequencies.

– Train services (8-dimensional): Feature related to the train routes that serve
the considered station.

Moreover, we also consider short-term features mt by considering a lag win-
dow that ranges between 1 to 6 past observations:

– Delay (1-dimensional): Difference in minutes between the real and the the-
oretical schedule of the train at the station.

– Load (6-dimensional): Number of passenger on the train for each of the last
6 passages at the considered station.

– Board (6-dimensional): Numbers of boarded passengers for each of the last
6 train passages at the station.

– Alight (6-dimensional): Numbers of alighted passengers for each of the last
6 train passages at the station.

4.1 Compared Forecasting Models

We compare on both suburb and inner-city stations different classical and ma-
chine learning models that serve as baselines for our LSTM EP:

– Last Value (LV): It is the simplest forecasting that consists of forwarding
the last observed load on the train to the next one at the same station.

– Contextual Average (CA): It consists of using of the average load of
trains that are committed on the same day type and time slice.
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– Gradient Boosting (XGB) [18]: A regressor model that produces a pre-
diction model in the form of an ensemble of weak decision trees. Two models
are proposed depending on the input features:

• XGB LT: Model that is trained based on long-term features et.

• XGB ST: Model trained on both long et and short-term mt features.

– LSTM: Basic recurrent network using both types of features.

– LSTM EP: The proposed RNN trained on context representation using
both types of features.

The best parameters of XGB have been selected with a grid search procedure
in conjunction with cross validation for K= 3 as the number of folds.

We evaluate the performance of models on each time step by root mean square
error (RMSE) and weighted absolute percentage error (WAPE) measures:

WAPE score :

∑
t ||yt − ŷt||

ȳ
(9)

WAPE is a derivative of the MAE that can be interpreted as the percentage
of the overall error compared to the average value of the actual observation.

4.2 Forecasting Results

The evaluation of the forecasting models is conducted by making comparisons
based on performance metrics. These metrics are expressed in terms of RMSE
and WAPE and are given for both the training and the test phases for the suburb
and inner-city stations. The five models defined in section 4.1, namely, the basic
last value (LV), the contextual average (CA), the gradient boosting (XGB) short
term (ST), long term (LT) and the LSTM-EP are compared. The errors obtained
for both the training and test sets are given in Table 2.

The results show that advanced models (XGB, LSTM) outperform the LV
and CA models. This performance improvement could mainly be explained by
the fact that the XGB and LSTM models have better generalisation abilities
and are able to fit more complex models than LV and CA, which simply predict
by forwarding the last observed value or averaging historical data. The basic
LSTM performs less in the inner-city station compared to the suburb station.
This can be explained by its difficulties to deal with the heterogeneity in term
of train services with that kind of station. Overall, LSTM EP leads to the best
results since it is able to capture in better way the underlying dynamics of the
temporal irregularity related to the heterogeneity of train services by means of
its encoder-decoder component.
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Table 2. Model performance on both studied stations

Model Suburb Inner city
WAPE RMSE WAPE RMSE

LV 17.9 35.8 Train score 41.9 186.7
CA 13.7 28.7 14.2 73.1
XGB LT 8.4 17.2 8.3 44.75
XGB ST 7.5 15.1 8.2 43.5
LSTM 11.5 24.3 8.9 51.5
LSTM EP 10.7 22.1 10.9 57.7

LV 24.1 47.2 Test score 46.9 205.0
CA 19.0 40.0 18.5 96.5
XGB LT 18.8 38.9 13.4 76.0
XGB ST 16.8 35.7 12.7 73.0
LSTM 16.2 34.0 13.7 75.3
LSTM EP 16.0 33.8 12.9 72.4

Looking at the prediction error of the LSTM EP according to the load to pre-
dict (see Figure 5), we observe that errors are increasing according to the load.
The model tends to slightly overestimate weakly loaded trains and greatly un-
derestimate the highly loaded trains. Heavily loaded trains are rare and present
contextual information similar to many less loaded trains, which explains the
difficulty of the model in predicting large loads. To remedy this problem, provi-
sioning features to distinguish these trains appears to be necessary. One could
imagine indicators related to the disturbance of the network and the known
presence of events near the station.

Fig. 5. Prediction errors depend on load class for suburb station

As shown in Figure 6, the model makes errors of the same order of magnitude
for weekdays and weekends with different difficulties. The variance of the error
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over a time slot is correlated to the importance of the load. On weekdays, we
observe larger errors in the morning and afternoon peak hour linked to the strong
variance and high load. The model makes average errors in the middle of the day
and low errors in the morning and evening. On weekends, except in the morning,
a relatively similar error variance is observed with a maximum at noon and in
the middle of the afternoon. We also observe that the model has more trouble
predicting weekend evenings than weekday evenings.

Fig. 6. Prediction errors depend on hour class for suburb station

When we examine the performance of the models on multi-step temporal
prediction, the LSTM EP outperforms XGB and basic LSTM for the next 6 time
steps (Table 3 and Table 4). These time steps correspond to the train passages at
the station and range between 14 to 182 minutes for the suburb station, whereas
it ranges between 2 to 61 minutes when considering the inner-city station since
the train passages are more frequent.

Table 3. RMSE test score of the suburb station for the multi-step forecasting models

Model t+1 t+2 t+3 t+4 t+5 t+6
Time interval* 14-32 29-62 44-92 59-122 75-152 90-182

XGB LT 38.9 38.9 38.9 38.9 38.9 38.9
XGB ST 35.7 36.6 36.7 36.7 37.6 38.1
LSTM 34.0 34.4 34.8 35.5 36.3 36.9
LSTM EP 33.8 34.0 34.1 34.4 34.7 34.9
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Table 4. RMSE test score on the inner-city station for the multi-step forecasting

Model t+1 t+2 t+3 t+4 t+5 t+6
Time interval* 2-13 5-23 9-31 12-43 15-53 18-61

XGB LT 76.0 76.0 76.0 76.0 76.0 76.0
XGB ST 73.0 72.8 73.3 73.8 73.4 73.5
LSTM 75.3 75.4 80.2 83.9 90.5 92.9
LSTM EP 72.4 72.1 72.1 72.2 72.6 72.8

The 5th and 90th percentiles of the time interval in the passage of trains at the time
T and T+n

Note that these performances are obtained with a single model that simulta-
neously predicts the load at all the time steps for both LSTM models. The XGB
LT is time-step invariant since it only considers long term features. For XGB
ST, we have as many models as the considered time steps. The performance of
short-term models are slightly degraded when we move forward in time, excepted
for basic LSTM in the case of inner city station, where we can notice a strong
degradation of its performance over time steps due to the heterogeneity of train
services.The LSTM EP shows very competitive results and better robustness
compared to other models for both the suburb and inner-city stations for all
steps considered. This can be explained by a better understanding of contex-
tual factors through a latent representation that helps to capture the underlying
dynamics of train service at the station.

4.3 Representation learning exploration

In this section, we propose exploring the latent spaces provided by our neural
network. These latent spaces correspond to the projection of contextual features
and predictive state representations learned during the training phase of our
train load target.

For this purpose, we first project the learned representation of the penulti-
mate layer of our LSTM EP obtained during the training of the train load at the
suburb station. Figure 7 shows the scatter plot of the dimensional reduction of
the latent representation. For each sub-plot, the considered representation is pro-
jected depending on a given feature (day, hour, month, train load). Each colour
block represents a common category of the handled feature. Dimensionality re-
duction is performed by preserving large pairwise distances between the points
with the help of principal component analysis (PCA) to reduce 200-dimensional
data into 50 dimensions, followed by a T-distributed stochastic neighbour em-
bedding (tSNE) to reduce the dimensionality from 50 to 2 or 3 dimensions. As
shown in Figure 7, the contextual representation (ut) is strongly structured ac-
cording to different levels depending on each contextual feature. Each point of
the obtained structure reflects a train passage, and depending on the gradient
of the underlying structure, we can highlight the profile of train service during
weekday and weekend (see Figure 7.a), the frequency of service with a distinc-
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tion between the rush and off-peak periods (see Figure 7.b), the seasonality (see
Figure 7.c) and the load range (see Figure 7.d).

Fig. 7. Latent representation (ut) according to contextual features obtained after di-
mensionality reduction (PCA + tSNE)

Fig. 8. Predictive latent space (zt) after applying 3-dimensional reduction
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When we reduce the predictive latent space (zt) to 3 dimensions, we can
observe the structure of the manifold as a spiralling band representing the daily
evolution of the train load (Figure 8).

4.4 Conclusion

In this paper, we investigated train load forecasting on both single- and multi-
step time horizons. The single step aims to predict the load for the next train at
the station, whereas the goal of multi-step is to predict ahead of time the load for
further train passages. The forecasting problem is particularly challenging since
we have variability in train services and several contextual factors that could
have a major impact on the time series to be predicted. For this purpose, we
proposed a model called LSTM EP based on an encoder-decoder combined with a
representation learning of contextual factors. This network has the particularity
of being able to learn a contextual representation from contextual features, to
capture the latent past dynamics through the underlying sub-structure of the
encoder-decoder, and then forecast the forthcoming dynamics with the help of
the predictive layer. The representation learning is a key value for the proposed
architecture; it contributes to understanding the features and representation of
the underlying dataset, which is essential for selecting the best neural network
architecture for this prediction task.

The obtained results have demonstrated the potential of the LSTM encoder-
predictor to address the short-term prediction of train load at stations compared
to the Gradient Boosting model and basic LSTM. We evaluated the performance
of the proposed model on two real datasets related to suburb and inner-city
stations for single and multi-step forecasting horizons of the train load. On both
configurations, the LSTM EP outperforms the LSTM, XGB and baseline models
by maintaining robustness in the quality of the forecasts throughout the time
horizon.

Future research should investigate the exploration of the learned represen-
tation. In particular, it would be interesting to investigate the ability of the
predictive latent space to characterize abnormal situations, such as disturbances
and traffic anomalies.
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