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Abstract. Human eye gaze patterns are highly individually character-
istic. Gaze patterns observed during the routine access of a user to a
device or document can therefore be used to identify subjects unobtru-
sively, that is, without the need to perform an explicit verification such
as entering a password. Existing approaches to biometric identification
from gaze patterns segment raw gaze data into short, local patterns called
saccades and fixations. Subjects are then identified by characterizing the
distribution of these patterns or deriving hand-crafted features for them.
In this paper, we follow a different approach by training deep neural net-
works directly on the raw gaze data. As the distribution of short, local
patterns has been shown to be particularly informative for distinguishing
subjects, we introduce a parameterized and end-to-end learnable statis-
tical aggregation layer called the quantile layer that enables the network
to explicitly fit the distribution of filter activations in preceeding layers.
We empirically show that deep neural networks with quantile layers out-
perform existing probabilistic and feature-based methods for identifying
subjects based on eye movements by a large margin.

Keywords: eye movements · deep learning · biometry.

1 Introduction

Human visual perception is a fundamentally active process. We are not simply
exposed to an incoming flow of visual sensory data, but rather actively control the
visual input by continuously performing eye movements that direct the gaze focus
to those points in space that are estimated to be most informative. The interplay
between visual information processing and gaze control has been extensively
studied in cognitive psychology, as it constitutes an important example of the
link between cognitive processing and motor control [9, 19].

One insight from existing studies in psychology is that the resulting gaze
patterns are highly individually characteristic [22, 23]. It is therefore possible
to identify subjects based on their observed gaze patterns with high accuracy,
and the use of gaze patterns as a biometric feature has been widely studied.
Approaches for using gaze patterns for identification can be divided into two
groups. One group of methods uses an active challenge-response protocol, that
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is, identification is based on eye movements in response to an artificial visual
stimulus [13, 25]. This has the disadvantage that additional time and effort of a
user is required in order to confirm her identity. In the second group of methods,
biometric identification is based on gaze patterns observed during the routine
access of a user to a device or document [17, 26]. This way the identity can be
confirmed unobtrusively, without requiring reaction to a specific challenge proto-
col. If the observed gaze patterns are unlikely to be generated by an authorized
individual, access can be terminated or an additional verification requested.

Existing approaches for identifying subjects from gaze patterns mostly seg-
ment the raw eye gaze data into fixations (short periods of time in which the
gaze is relatively stable) and saccades (rapid movements of the gaze to a new
fixation position). They then either use probabilistic models that characterize
the distribution of saccades and fixations [17, 1, 20], or hand-crafted statistical
features that characterize different properties of saccades such as lengths, ve-
locities, or accelerations [12, 26, 7]. In this paper, we follow a different approach
by training deep neural networks on the raw gaze position data, without seg-
menting gaze movements into saccades and fixations or applying handcrafted
aggregate features. However, we take inspiration from existing probabilistic ap-
proaches, which have shown that the distribution of local, short-term patterns
in gaze movements such as saccades and fixations can be highly characteristic
for different individuals. We therefore design neural network architectures that
can extract such local patterns and characterize their distribution.

More specifically, we introduce a parameterized and end-to-end learnable
statistical aggregation layer called the quantile layer that enables the network to
explicitly fit the distribution of filter activations in preceeding layers. We design
network architectures in which stacked 1D-convolution layers extract local, short-
term patterns from eye movement sequences. The quantile layer characterizes
the distribution of these patterns by approximating the quantile function, that
is, the inverse cumulative distribution function, of the activations of the filters
across the time series of gaze movements. The quantile function is approximated
by sampling the empirical quantile function of the activations at a set of points,
which are trainable model parameters. Natural special cases of the quantile layer
are global maximum pooling and global median pooling; median pooling will
approximate average pooling if filter activations are approximately symmetric.
The proposed quantile layer can thus be seen as an extension of standard global
pooling layers that retains more information about the distribution of activations
than the average or maximum. In the same way as standard global pooling layers,
the quantile layer aggregates over the entire sequence, enabling the model to work
with variable-length sequences. By learning the sampling points, the model can
focus on those parts of the distribution function that are most discriminative for
identification. Using a piecewise linear approximation to the empirical quantile
function makes the layer fully differentiable; models can thus be trained end-to-
end using gradient descent. We empirically show that deep neural networks using
quantile layers outperform existing probabilistic and feature-based approaches
for identification based on gaze movements by a large margin.
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Unobtrusive biometric identification has been most extensively studied based
on gaze patterns during reading. In this paper, we study biometric eye gaze
models for arbitrary non-text input. We specifically use data from the dynamic
images and eye movements (DIEM) project, a large-scale data collection effort
during which gaze movements of over 200 participants each watching a subset of
84 video sequences were recorded [21]. This data is approximately representative
of scenarios where a user is not reading text (e.g., watching a live stream from
a security camera), broadening the application range of gaze-based biometrics.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the quantile layer, Section 4 discusses deep neural
network architectures for eye gaze biometrics. We empirically study identification
accuracy of the proposed methods and different baselines in Section 5.

2 Related Work

Biometric identification from eye gaze patterns observed as a response to a spe-
cific stimulus has been studied extensively. The stimulus can for example be a
moving [13, 16, 18, 31] or fixed [2] dot on a monitor, or a specific image stimu-
lus [25]. More recently, unobtrusive biometric identification based on gaze pat-
terns observed during the routine access of a user to a device or document
has been studied. This approach has the advantage that no additional time and
attention of a user are needed for identification, because gaze patterns are gener-
ated on material that is viewed anyway. Most unobtrusive approaches are based
on observing eye movements of subjects generated while reading text [11, 1, 26],
but identification based on eye movements generated while viewing non-text
input has also been studied [15].

Existing approaches for biometric identification (with the exception of the
work by Kinnunen et al. [15], see below) first segment the observed eye move-
ment data into fixations (periods of little gaze movement during which the visual
content at the current position is processed) and saccades (short, ballistic move-
ments that relocate the gaze to a new fixation position). One approach that has
been widely studied in the literature is to derive hand-crafted features of these
saccades and fixations that are believed to be characteristic for individual sub-
jects. Holland and Komogortsev have studied relatively simple features such as
average fixation duration, average saccade amplitude and average saccade veloc-
ity [11, 12]. This line of work was later extended to more complex features such as
saccadic vigor, acceleration, or the so-called main sequence feature [26, 7]. Sub-
jects are then identified by matching the features of observed eye gaze sequences
generated by an unknown individual to those of known individuals, using for
example shortest distance[11], statistical tests [12, 26], or an RBF classifier [7].

Another popular approach is to use probabilistic models that characterize
user-specific distributions over saccades and fixations. Landwehr et al. [17] have
studied simple parametric models based on the Gamma family. Abdelwahab
et al. [1] have studied semiparametric models in which the identity of a user
is inferred by Bayesian inference based on Metropolis-Hastings sampling under
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a Gaussian process prior. Makowski et al. [20] study a discriminative model
that takes into account lexical features of fixated words, such as word frequency
and word lengths, and show that this can further increase identification accu-
racy from gaze patterns obtained during reading. The approach discussed by
Kinnunen et al. [15] also uses a probabilistic approach, by fitting a Gaussian
mixture model to the distribution of angles between successive gaze positions.
Unlike the approaches discussed above, Kinnunen et al. do not segment the eye
signal into fixations and saccades, but rather use all recorded gaze positions. Our
work differs from these existing approaches to biometric identification from gaze
patterns in that we train deep neural networks on the raw eye gaze to distinguish
between different subjects. We show empirically that this leads to large gains
in identification accuracy compared to existing feature-based and probabilistic
approaches, including the model by Kinnunen et al. [15].

The quantile layer we propose as a more expressive statistical aggregation
layer than standard global pooling is related to the learnable histogram layers
proposed by Wang et al. [30] and Sedighi and Fridrich [27]. Histogram layers
are also fully differentiable, parameterized statistical aggregation layers. They
characterize the distribution of values in the input to the layer in terms of an
approximation to a histogram, in which bin centers and bin widths are learnable
parameters. Wang et al. [30] use linear approximations to smoothen the sharp
edges in a traditional histogram function and enable gradient flow. Sedighi and
Fridrich [27] use Gaussian kernels as a soft, differentiable approximation to his-
togram bins. The histogram layers proposed by Wang et al. [30] and Sedighi and
Fridrich [27] directly approximate the probability density of the input values,
while the quantile layer we propose approximates the cumulative distribution
function. The quantile layer also naturally generalizes maximum pooling and
median pooling, while the histogram layers do not directly relate to standard
pooling operations. We use architectures based on the histogram layers of Wang
et al. [30] and Sedighi and Fridrich [27] as baselines in our empirical study.

Finally, Couture et al. [5] have recently studied quantiles as a method to ag-
gregate instance-level predictions when training deep multi-instance neural net-
works for detecting tumor type from tissue images. In their application, images
are represented as bags of subimages, and predictions on individual subimages
are combined into a bag prediction based on the quantile function.

3 The Quantile Layer

This section introduces the quantile layer, a parameterized and end-to-end learn-
able layer for characterizing the distribution of filter activations in a preceeding
convolution layer. This layer will be a central component in the deep neural net-
work architectures for eye gaze biometrics that we develop in the next section.

The gaze movement data we study is a discrete time series of 2D-coordinates
that indicate the current focus point of the gaze on a plane (e.g., a monitor).
The discrete time series is obtained by sampling the continuous gaze movements
at a regular frequency, and can be observed using standard eye tracking devices.
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Fig. 1. Density function, cumulative distribution function, and quantile function
(dashed lines) with empirical counterparts (solid lines) for a normally distributed vari-
able x ∼ N (0, 1). Tick marks at zero line show a sample from the distribution.

Existing approaches for user identification from eye movements first preprocess
the raw signal into two kinds of short, local patterns: saccades (rapid movements,
characterized by their amplitude) and fixations (periods of almost constant gaze
position, characterized by their duration). They then distinguish users based on
their distribution of saccade amplitudes and fixation durations (and possibly
other local features). This is done either by computing aggregate features [11,
12, 26] or by fitting parametric or semiparametric probabilistic models to the
observed distributions [17, 1, 20]. The key insight from this existing work is that
the most informative feature for identification is the distribution of short, local
gaze patterns seen in a particular sequence. In contrast, long-term dependencies
in the time series will be less informative, as these are more likely to be a function
of the visual input than the identity of the viewer.

Motivated by these observations in earlier work, we study network archi-
tectures that consists of a deep arrangement of 1D-convolution filters, which
extract local, short-term patterns from the raw gaze signal, followed by the
quantile layer whose output characterizes the distribution of these patterns. We
design the quantile layer in such a way that it naturally generalizes global max-
imum, median, and minimum pooling. As we assume that the distribution of
short-term patterns is most informative, we use standard non-dilated convolu-
tion operations, rather than dilated convolution operations which have recently
been used for modeling more long-term patterns in time series, for example for
audio data [29].

Let x denote a real-valued random variable whose distribution is given by
the probability density function f(x). The distribution of x can be expressed
in different forms: by the density function f(x), by the cumulative distribution
function F : R→ [0, 1] defined by

F (x) =

∫ x

−∞
f(z)dz, (1)

or by the quantile function Q : (0, 1)→ R defined by

Q(r) = inf{x ∈ R : r ≤ F (x)} (2)
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where inf denotes the infimum and (0, 1) ⊂ R the open interval from zero to
one. The quantile function Q is characterized by p(x ≤ Q(r)) = r. That is,
the quantile function yields the value Q(r) ∈ R such that all values of the
random variable x smaller than Q(r) together account for probability mass r. If
the cumulative distribution function F is continuous and strictly monotonically
increasing, which it will be if the density function f(x) is continuous and positive
everywhere on R, the quantile function Q is simply the inverse of the cumulative
distribution function, Q = F−1. Figure 1 visualizes the relationship between
density, cumulative distribution, and quantile functions for a standard normally
distributed variable x ∼ N (0, 1).

If X = {x1, ..., xn} with xi ∼ p(x) denotes a sample of the random variable
x, the empirical cumulative distribution function F̂X : R → [0, 1] is a non-
parametric estimator of the cumulative distribution function F . It is given by

F̂X (x) =
1

n

n∑
i=1

I(xi ≤ x) (3)

where

I(xi ≤ x) =

{
1 if xi ≤ x
0 if xi > x.

(4)

In analogy to the empirical distribution function, the empirical quantile function
Q̂X : (0, 1]→ R is a non-parametric estimator of the quantile function Q. It is
defined by

Q̂X (r) = inf{x ∈ R : r ≤ F̂X (x)}. (5)

Figure 1 visualizes the empirical cumulative distribution function F̂ (x) and the
empirical quantile function Q̂(r) together with a set of samples for a standard
normally distributed variable. For sufficiently large sample size n, the empirical
quantile function faithfully characterizes the distribution of x in the following
sense. According to the Glivenko-Cantelli theorem, F̂X uniformly converges to
the true cumulative distribution function F ,

sup
x∈R
|F̂X (x)− F (x)| a.s.−−→ 0 (6)

[28], where we use
a.s.−−→ to denote almost sure convergence in the sample size n.

For all r ∈ (0, 1) this implies almost sure convergence of Q̂X (r) to Q(r),

|Q̂X (r)−Q(r)| a.s.−−→ 0 (7)

provided that Q is continuous at r [24]. The empirical quantile function thus
faithfully estimates the quantile function in the limit. Finally, the quantile func-
tion Q determines the distribution over x, that is, for a given quantile function
Q there is a unique cumulative distribution function F such that Equation 2 is
satisfied [6].

Let π : {1, ..., n} → {1, ..., n} denote a permutation that sorts the sample in
ascending order, that is, xπ(i) ≤ xπ(i+1) for i ∈ {1, ..., n− 1}. Then

Q̂X (r) = xπ(k) (8)
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Fig. 2. Empirical quantile function, sorted samples, and piecewise linear approximation
to the empirical quantile function. The set of samples is identical to that in Figure 1.

for the unique k ∈ N fulfilling the condition

k − 1

n
< r ≤ k

n
. (9)

That is, the empirical quantile function Q̂X (r) can be computed by sorting the
samples in ascending order, and returning the sample at position dr · ne, where
for x ∈ R we use dxe to denote the smallest integer larger than or equal to
x. This is visualized in Figure 2, where the ordered samples xπ(1), ..., xπ(n) are

shown as a bar plot together with Q̂X .
We will also work with a piecewise linear approximation Q̃X to the em-

pirical quantile function Q̂X , as shown in Figure 2. This function is de-
fined on the interval [ 1

2n , 1 −
1
2n ] by Q̃X ( 2k−1

2n ) = Q̂X ( 2k−1
2n ) for k ∈

{1, ..., n} and by being piecewise linear in between. The piecewise lin-
ear approximation is needed in order to make the quantile layer that we
introduce below fully differentiable. Note that Q̃X will return the min-
imum, median, and maximum of the set of samples as special cases.
Equation 8 implies Q̃X ( 1

2n ) = min{x1, ..., xn}, Q̃X (0.5) = med{x1, ..., xn}, and

Q̃X (1− 1
2n ) = max{x1, ..., xn}.

We now define the quantile layer as the operation of sampling the piecewise
linear approximation Q̃X to the empirical quantile function Q̂X for a set X of
incoming filter activations. The quantile layer takes as input the output of a
convolution layer, and outputs a set of features in which the temporal dimension
has been aggregated out. The input to the quantile layer is thus a matrix Z ∈
RT×K of activations, where K is the number of filters and T the temporal
dimension in the preceding convolution layer. The output of the quantile layer
is a matrix Y ∈ RK×M , where M is a hyperparameter that determines at how
many points Q̂X is sampled. Let zt,k denote the element at row t and column
k of Z, and yk,m denote the element at row k and column m of Y. Then the
outputs yk,m of the layer are defined by

yk,m = Q̃Xk

(
σ(αk,m)

T − 1

T
+

1

2T

)
(10)
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where Xk = {zt,k|1 ≤ t ≤ T} is the set of activations of filter k across time,
σ(α) = 1

1+exp(−α) is the sigmoid function, and αk,m are learnable weights. The

quantity σ(αk,m) ∈ (0, 1) determines the point at which the approximation Q̃Xk

to the empirical quantile function of the set Xk is sampled. As σ(αk,m) is varied
from near zero to near one, yk,m will change continuously from the minimum
to the maximum of the values in Xk, following the piecewise linear function in
Figure 2. Due to the piecewise linear approximation, gradients of the weights
αk,m with respect to the network loss are nonzero and the layer can be trained
end-to-end using standard stochastic gradient methods.

The quantile layer is easily implemented in deep learning frameworks by sort-
ing the incoming activations for each filter k, linearly interpolating, and returning
the linearly interpolated values at the points prescribed by weights αk,1, ..., αk,M .
The output of the layer is a discrete approximation to the empirical quantile
function of the activations of filter k. The learnable weights determine at which
part of the cumulative distribution function the approximation is focused. For
example, sampling points can be spaced uniformly across the spectrum of values
or concentrate on those values that are near the maximum or minimum.

4 Model Architectures

We treat user identification from gaze movement patterns as a sequence clas-
sification problem. The input is a sequence of two-dimensional gaze positions,
separately recorded for the left and right eye, and sampled regularly over time.
The data we work with additionally contains a scalar measurement of the pupil
dilation for the left and the right eye at each point in time. We concatenate the
gaze positions and pupil dilations to form a sequence of shape T × 6, where the
sequence length T is typically different for each input.

We study 1D-convolutional neural networks to classify gaze movement se-
quences, using two different architectures. The first architecture stacks 1D-
convolution layers to extract local features from the sequence without reducing
the temporal dimension by intermediate pooling layers; the temporal dimension
is then aggregated out in a statistical aggregation layer before classification is
performed. The second architecture reduces the temporal dimension with in-
termediate pooling layers to capture more large-scale temporal patterns before
performing aggregation. Both architectures are 17 layers deep (not including
pooling or aggregation layers) and are shown in Table 1. As aggregation layer,
we study the quantile layer introduced in Section 3, global maximum pooling,
global average pooling, and the histogram layers proposed by Wang et al. [30]
and Sedighi and Fridrich [27]. More details about baselines are given in Section 5.

All convolution layers are followed by a nonlinear activation function. We
use parameterized ReLU activations [8], a generalization of leaky ReLUs, of the
form

s(y) =

{
y if y > 0

(1− βj)y if y ≤ 0.
(11)
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Table 1. Network architectures without (left) and with (right) intermediate pooling
layers. T denotes the sequence length. All convolution layers use stride one, the pooling
layers use stride two. Both architectures use dropout with parameter 0.5 before the fully
connected layer. As aggregation layer we study the quantile layer, global maximum
or average pooling, and the histogram layers by Wang et al. [30] and Sedighi and
Fridrich [27]. Output shape M and parameters vary across aggregation layers.

Architecture Without
Intermediate Pooling

Architecture With
Intermediate Pooling

Layer Output Size Layer Output Size Parameters

input T × 6 input T × 6 0〈[
conv 3× 1− 16

]
× 4 T × 16

[
conv 3× 1− 16

]
× 4 T × 16 2660

- - pool 2× 1 T/2× 16 0〈[
conv 3× 1− 32

]
× 4 T × 32

[
conv 3× 1− 32

]
× 4 T/2× 32 10884

- - pool 2× 1 T/4× 32 0〈[
conv 3× 1− 64

]
× 4 T × 64

[
conv 3× 1− 64

]
× 4 T/4× 64 43268

- - pool 2× 1 T/8× 64 0〈[
conv 3× 1− 128

]
× 4 T × 128

[
conv 3× 1− 128

]
× 4 T/8× 128 172548

aggregation 128×M aggregation 128×M variable

fully connected 210 fully connected 210 27090 ·M

where βj is a layer-specific parameter and j is the layer index. The parameters
βj are fitted during training and regularized towards zero, such that the slope of
the activation below zero does not become too small. The rationale for using this
activation is that we want to preserve as much information as possible about the
distribution of the responses of the convolution filters, so that this information
can later be exploited in the statistical aggregation layer. In contrast, regular
ReLU activations discard much information by not distinguishing between any
activation values that fall below zero.

As an alternative to the 1D-convolutional architectures shown in Table 1, we
also study a recurrent neural network architecture. We choose gated recurrent
units (GRU, [3]) as the recurrent unit, because we found architectures based on
GRUs to be faster and more robust to train and these architectures have been
shown to yield very similar predictive performance [4] as architectures based on
LSTM units [10]. We study a sequence classification architecture in which the
input layer is followed by two layers of gated recurrent units, and the state vector
of the last GRU in the second layer is fed into a dense layer that predicts the
class label. The first layer of GRUs contains 64 units and the second layer 128
units. We employ dropout with dropout parameter 0.5 before the dense layer.



10 A. Abdelwahab, N. Landwehr

5 Empirical Study

In this section, we empirically study how accurately subjects can be distin-
guished based on observed gaze patterns. We evaluate different neural network
architectures and aggregation layers, and compare with existing probabilistic
and feature-based models for eye gaze biometrics.

5.1 Experimental Setup

Data The Dynamic Images and Eye Movements (DIEM) project is a large-scale
data collection effort in which gaze movements of subjects have been recorded
while viewing non-text visual input [21]. The DIEM data set contains gaze move-
ment observations of 223 subjects on 85 short video sequences that contain a va-
riety of visual material, such as recordings of street scenes, documentary videos,
movie excerpts, recordings of sport matches, or television advertisements. Sub-
jects in the data set have viewed between 6 and 26 videos. We restrict ourselves
to those subjects which have viewed at least 25 videos, which leaves 210 of the
223 subjects in the data. The average length of a video sequence is 95 seconds.
The entire data set contains 5381 gaze movement sequences.

Gaze movements have been recorded with an SR Research Eyelink 2000 eye
tracker. While the original temporal resolution of the eye tracker is 1000 Hz, in
the DIEM data set gaze movements are sampled down to a temporal resolution of
30 Hz [21]. This is a lower resolution than used in most other studies; for example,
Abdelwahab et al. [1] use 500 Hz, while studies by Holland and Komogortsev [11,
12] use either 1000 Hz or 75 Hz data. At each of the 30 time points per second,
the two-dimensional gaze position and a scalar measurement of the pupil dilation
is available for the left and the right eye, which we concatenate to form a six-
dimensional input.

Problem Setup We treat the problem of identifying individuals in the DIEM
data set based on their gaze patterns as a 210-class classification problem. A
training instance is a sequence of gaze movements (of one individual on one
video), annotated with the individual’s identity as the class label. We split the
entire set of 5381 gaze movement sequences into a training set (2734 sequences),
a validation set (537 sequences), and a test set (2110 sequences). The split is
constructed by splitting the 84 videos into 50% (42) training videos, 10% (8)
validation videos, and 40% (34) test videos, and including the gaze movement
observations of all individuals on the training, validation, and test videos in
the respective set of sequences. This ensures that predictions are evaluated on
novel visual input not seen in the training data. At test time, the task is to
infer the unknown identity of an individual after observing gaze patterns of that
individual on N video sequences drawn at random from all videos in the test
set viewed by that individual, where N is varied from one to five. Applying a
learned model to each of the N sequences yields predictive class probabilities
pi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ 210. The most likely identity is then inferred by
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Fig. 3. Identification error for convolutional neural network architectures without in-
termediate pooling (left), with intermediate pooling (right) and for the recurrent neural
network architecture (right) as a function of the number of test videos N on which a
user is observed. Error bars indicate the standard error.

arg maxj
∏N
i=1 pi,j and compared to the true identity. We measure identification

error, defined as the fraction of experiments in which the inferred identity is not
equal to the true identity of the individual. Results are averaged over the 210
individuals and 10 random draws of test videos for each individual.

Methods under Study We study the deep neural network architectures
with and without intermediate pooling layers shown in Table 1 in combination
with different aggregation layers: the quantile layer as described in Section 3
(Quantile), global maximum or average pooling (Global Maximum, Global Av-
erage), and the histogram layers proposed by Wang et al. [30] and Sedighi and
Fridrich [27]. The input to the histogram layers is identical to the input of the
quantile layer, namely a matrix Z ∈ RT×K of activations of the preceding con-
volution layer. The layers approximate the distribution of values per filter k in
Z by a histogram with M bins, where bin centers and bin widths are learnable
parameters. The output is a matrix Y ∈ RK×M ; an element yk,m of the output
computes the fraction of values of filter k that fall into bin m. The two histogram
baselines differ in how they smoothen the sharp edges in traditional histogram
functions in order to enable gradient flow: using linear approximations [30] or
Gaussian kernels [27]. For the models with quantile and histogram layers, the hy-
perparameter M is optimized on the validation set on a grid M ∈ {4, 8, 16, 32},
yielding M = 8 for both histogram-based models and M = 16 for the quantile-
based model. We use the Adam optimizer [14] with initial learning rate 0.0001
and train all models for 2000 epochs. For histogram-based models, optimization
failed with the default initial learning rate of 0.0001. We instead use an initial
learning rate of 0.00001, with which optimization succeeded. The batch size is
one in all experiments.

We also study the recurrent neural network architecture with two hidden
layers of gated recurrent units as discussed in Section 4. It is trained with the
Adam optimizer for 2000 episodes, using an initial learning rate of 0.001.



12 A. Abdelwahab, N. Landwehr

0 500 1000 1500 2000

1

2

3

4

5

Epoch No.

Lo
ss

Loss Over Training Epochs

 

 

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error Over Training Epochs

Epoch No.

E
rr

or

Quantile

Global Average

Global Maximum

Wang et al. (2016)

Sedighi and Fridrich (2017)

Gated Recurrent Unit

Fig. 4. Identification error (left) and loss (right) for convolutional network architectures
without intermediate pooling and recurrent neural network as a function of the epoch
number during training. Dashed curves denote training error and loss while solid curves
denote test error and loss.

As further baselines, we study the probabilistic approaches by Kinnunen et
al. [15], Landwehr et al. [17], and Abdelwahab et al. [1], which respectively em-
ploy Gaussian mixture models, parametric models based on the Gamma family,
and semiparametric models based on Gaussian processes in order to characterize
distributions over gaze patterns. The model of Kinnunen et al. can be directly
applied in our domain. We tune the number of histogram bins, window size, and
number of mixture components on the validation data. The models of Landwehr
et al. [17] and Abdelwahab et al. [1] were designed for gaze movements during
reading; they are therefore not directly applicable. We adapt these models of to
our non-text domain as follows. Both models characterize individual gaze pat-
terns by separately fitting the distribution of saccade amplitudes and fixation
durations for different so-called saccade types: regression, refixation, next word
movement, and forward skip. The saccade types relate the gaze movement to the
structure of the text being read. We instead separately fit distributions for sac-
cade types up, down, left, right, which indicate the predominant direction of the
gaze movement. The DIEM data contains saccade and fixation annotations; we
can thus preprocess the data into sequences of saccades and fixations as needed
for an empirical comparison with these models. Another recently published prob-
abilistic model is that of Makowski et al. [20]. This model is more difficult to
adapt because it is built around lexical features of the text being read; without
lexical features it was empirically found to be no more accurate than the model
by Abdelwahab et al. [20]. We therefore exclude it from the empirical study.

We finally compare against the feature-based methods of Holland and Ko-
mogortsev [12] and Rigas et al. [26]. Both of these methods follow the same
general approach, only using different sets of features. We use the variant that
employs two-sample Kolmogorov-Smirnov test for the matching module and
weighted mean as the fusion method, since results reported in the paper were
best for these variants on low-resolution data [12].
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Fig. 5. Learned quantile sampling points σ(αk,m) as defined by Equation 10.

5.2 Results

Figure 3 shows error rates for identifying individuals in the DIEM data set for
different neural network architectures, including the recurrent neural network,
as a function of the number N of test videos on which gaze patterns of the
unknown individual are observed. We observe that architectures without inter-
mediate pooling layers have lower error rates. This is in line with the assumption
that local, short-term gaze patterns are most informative for identification: the
larger receptive fields of neurons in architectures with intermediate pooling do
not appear to be advantageous. We will therefore focus on architectures without
intermediate pooling in the remaining discussion. Architectures based on gated
recurrent units are also focused on fitting relatively long-term temporal patterns
in data; the recurrent architecture we study performs slightly better than con-
volutional architectures with intermediate pooling but worse than convolutional
architectures without intermediate pooling. Employing quantile layers for sta-
tistical aggregation outperforms global maximum or average pooling, indicating
that retaining more information about the distribution of filter activations is
informative for identification. Surprisingly, architectures based on the histogram
layers proposed by Wang et al. [30] and Sedighi and Fridrich [27] do not consis-
tently improve over the global pooling methods.

Figure 4 shows error rates and losses for architectures without intermediate
pooling layers on the training and test data as a function of the epoch number
during training. We observe that architectures with quantile and histogram layers
both achieve lower training error than architectures with global maximum or
average pooling, but only for the quantile-based model this translates into lower
error on the test data. Figure 4 thus does not suggest that there are any problems
with fitting the histogram-based models using our training protocol; manual
inspection of the learned histogram bins also showed reasonable bin centers and
widths. Rather, results seem to indicate that characterizing distributions in terms
of quantiles – which is closer to standard average or maximum pooling operations
– generalizes better than characterizing distributions by histograms.
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Fig. 6. Identification error as a function of the number of test videos N on which a
user is observed, using average gaze point only. Error bars indicate the standard error.

Figure 5 shows learned values for the quantile sampling points σ(αk,m) (see
Equation 10). We observe that sampling points adapt to each filter, and outputs
yk,m of the quantile layer focus more on values close to the maximum (σ(αk,m)
near one) than the minimum (σ(αk,m) near zero).

We finally compare against probabilistic and feature-based baselines from the
literature, specifically the models of Kinnunen et al. [15], Landwehr et al. [17],
Abdelwahab et al. [1], Holland and Komogortsev [12] and Rigas et al. [26].
These models only use the gaze position averaged over the left and right eye,
and do not use pupil dilation. We also study our models in this setting, using
only the average gaze position as input in the neural networks. Figure 6 shows
identification error as a function of the number of test videos for this setting. We
observe that identification errors are generally higher than in the setting where
separate gaze positions and pupil dilations are available. Moreover, the best
neural networks outperform the probabilistic and feature-based models by a large
margin. This may partially be explained by the fact that the probabilistic models
were originally developed for text reading, and for data with a much higher
temporal resolution (500 Hz versus 30 Hz in our study). The quantile-based
model again performs best among the neural network architectures studied.

6 Conclusions

We have studied deep neural networks for unobtrusive biometric identification
based on gaze patterns observed on non-text visual input. Differences in the
distribution of local, short-term gaze patterns are most informative for distin-
guishing between individuals. To characterize these distributions, we introduced
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the quantile layer, a learnable statistical aggregation layer that approximates
the empirical quantile function of the activations of a preceding stack of 1D-
convolution layers. In contrast to existing learnable statistical aggregation lay-
ers that approximate the distribution of filter activations by a histogram, the
quantile layer naturally generalizes standard global pooling layers. From our
empirical study we can conclude that neural networks with quantile layers out-
perform networks with global average or maximum pooling, as well as networks
that use histogram layers. In our domain, deep neural networks also outperform
probabilistic and feature-based models from the literature by a wide margin.

Acknowledgments

This work was partially funded by the German Research Foundation under grant
LA3270/1-1.

References

1. Abdelwahab, A., Kliegl, R., Landwehr, N.: A semiparametric model for Bayesian
reader identification. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing (EMNLP-2016). Austin, TX (2016)

2. Bednarik, R., Kinnunen, T., Mihaila, A., Fränti, P.: Eye-movements as a biometric.
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