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Abstract. Post-hoc interpretability approaches, although powerful tools
to generate explanations for predictions made by a trained black-box
model, have been shown to be vulnerable to issues caused by lack of ro-
bustness of the classifier. In particular, this paper focuses on the notion of
explanation justification, defined as connectedness to ground-truth data,
in the context of counterfactuals. In this work, we explore the extent of
the risk of generating unjustified explanations. We propose an empirical
study to assess the vulnerability of classifiers and show that the cho-
sen learning algorithm heavily impacts the vulnerability of the model.
Additionally, we show that state-of-the-art post-hoc counterfactual ap-
proaches can minimize the impact of this risk by generating less local
explanations1.

Keywords: machine learning interpretability · counterfactual explana-
tions.

1 Introduction

The soaring number of machine learning applications has been fueling the need
for reliant interpretability tools to explain the predictions of models without
sacrificing their predictive accuracy. Among these, post-hoc interpretability ap-
proaches [12] are popular as they can be used for any classifier regardless of its
training data (i.e. blackbox assumption). However, this has also been a common
criticism for such approaches, as it also implies that there is no guarantee that
the built explanations are faithful to ground-truth data.

A specific type of interpretability approach generate counterfactual explana-
tions (e.g. [25,30,11,28]), inspired from counterfactual reasoning (e.g. [5]) which
aims at answering the question: What will be the consequence of performing this
action? Adapted to the context of machine learning classification, counterfactual
explanations try to identify how altering an input observation can influence its

1 Source code available at: https://github.com/thibaultlaugel/truce

https://github.com/thibaultlaugel/truce
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prediction, and in particular change its predicted class. These approaches have
been recently under the spotlight as they provide a user with directly actionable
explanations that can be easily understood [30].

However, used in a post-hoc context, counterfactual explanation approaches
are vulnerable to aforementioned issues, leading to explanations that may not
be linked to any ground-truth data and therefore not satisfying in the context
of interpretability. In particular, [21] argues that an important criterion for in-
terpretability is that counterfactual explanations should be justified, meaning
continuously connected to ground-truth instances from the same class. However,
they show that this connectedness criterion is not guaranteed in the post-hoc
context, leading to unconnected classification regions and hence potential issues
interpretability-wise. This paper is an extension of this previous work, proposing
to further study the apparition of these unconnected regions and analyze how
existing counterfactual approaches can avoid generating unjustified explanations.

This paper proposes the following contributions:

– We pursue the analysis of [21] about the unconnectedness of classification
regions and analyze the vulnerability of various classifiers. We show that
classifiers are not equally vulnerable.

– We study the link between unconnectedness and overfitting and show that
controlling overfitting helps reducing unconnectedness.

– We show that state-of-the-art post-hoc counterfactual approaches may gen-
erate justified explanations but at the expense of counterfactual proximity.

Section 2 is devoted to presenting the state-of-the-art of post-hoc inter-
pretability and counterfactual explanations, as well as highlighting studies that
are similar to this work. Section 3 recalls the motivations and definition and
for ground-truth backed counterfactual explanations, while Section 4 describes
the algorithms used for this analysis. The study itself, as well as the obtained
results, are presented in Section 5.

2 Background

2.1 Post-hoc Interpretability

In order to build explanations for predictions made by a trained black-box model,
post-hoc interpretability approaches generally rely on sampling instances and
labelling them with the model to gather information about its behavior, either
locally around a prediction [26] or globally [6]. These instances are then used
to approximate the decision function of the black-box and build understandable
explanations, using for instance a surrogate model (e.g. a linear model in [26] or
a decision tree in [13]), or by computing meaningful coefficients (e.g. Shapeley
values [24] or decision rules [29]). Other methods rely on specific instances to
build explanations using comparison to relevant neighbors, such as case-based
reasoning approaches [17] and counterfactual explanation approaches.
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Instead of simply identifying important features, the latter aim at finding
the minimal perturbation required to alter a given prediction. A counterfac-
tual explanation is thus a specific data instance, close to the observation whose
prediction is being explained, but predicted to belong to a different class. This
form of explanation provides a user with tangible explanations that are directly
understandable and actionable; this can be opposed to other types of explana-
tions using feature importance vectors, which are arguably harder to use and
to understand for a non-expert user [30]. Several formalizations of the counter-
factual problem can be found in the literature, depending on the formulation of
the minimization problem and on the used distance metric. For instance, [20]
looks uniformly for the L2-closest instance of an other class, while [11] uses a
local decision tree trained on instances sampled with a genetic algorithm to find
the local L0-closest instance. Another formulation of the counterfactual problem
can be found in [19], which uses search algorithms to find the instance that has
the highest probability of belonging to another class within a certain maximum
distance. Finally, the problem in [30], formulated as a tradeoff between the L1

closest instance and a specific classification score target, is another way to tackle
the counterfactual problem.

2.2 Studies of Post-hoc Interpretability Approaches

The post-hoc paradigm, and in particular the need for post-hoc approaches to
use instances that were not used to train the model to build their explanations,
raises questions about their relevance and usefulness. Troublesome issues have
been identified: for instance, it has been noticed [2] that modeling the decision
function of a black-box classifier with a surrogate model trained on generated
instances can result in explanation vectors that point in the wrong directions
in some areas of the feature space in trivial problems. The stability of post-
hoc explainer systems has been criticized as well, showing that because of this
sampling, some approaches are locally not stable enough [1] or on the contrary
too stable and thus not locally accurate enough [22].

Recently, a few works [23,27] have started questioning the post-hoc paradigm
itself and criticizing the risk of generating explanations that are disconnected
from the ground truth, which is the main topic of this work. Identifying relevant
ground-truth instances for a specific prediction has also been studied before
(e.g. [16]), but generally require retraining the classifier, which is not possible
in the context of a black-box. In a similar fashion, [15] try to identify which
predictions can be trusted in regard to ground-truth instances based on their
distance to training data in the context of new predictions.

2.3 Adversarial Examples

Although not sharing the same purpose, both counterfactual explanations and
adversarial examples [3] are similar in the way they are generated, i.e. by trying
to perturb an instance to alter its prediction. Studies in the context of image
classification using deep neural networks [9] have shown that the connectedness
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Fig. 1. Left picture: illustration of the connectedness notion. The decision boundary
learned by a classifier (illustrated by the yellow and green regions) has created two
green regions. CF1 and CF2 are two candidate counterfactual explanations for x.
CF1 can be connected to the training instance a by a continuous path that do not
cross the decision boundary of f , while CF1 can not. Right picture: a random forest
classifier with 200 trees has been trained on 80% of the dataset (a 2D version of the
iris dataset) with 0.79± 0.01 accuracy over the test set. Because of its low robustness,
unconnected classification regions can be observed (e.g. small red square in the light
blue region).

notion studied in this paper was not enough for adversarial examples detection.
However, since adversarial examples have been generally studied in the context
of high-dimensional unstructured data, (i.e. images, text and sound for instance),
as shown exhaustively in existing surveys (e.g. [4]), they remain out of the scope
of this study.

The goal of this work is to study a desideratum for counterfactual explana-
tions in the context of interpretability in structured data; it is not to detect a
classification error nor an adversarial example.

3 Justification Using Ground-truth Data

This section recalls the definitions and intuitions behind the notion of justifica-
tion, which is the main topic of this work.

3.1 Intuition and Definitions

The notion of ground-truth justification proposed in [21] aims at making a dis-
tinction between an explanation that has been generated because of some pre-
vious knowledge (such as training data) and one that would be a consequence
of an artifact of the classifier. While generalization is a desirable property for a
classifier for prediction, it is different in the context of interpretability, since an
explanation that a user can not understand is useless.
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For this purpose, an intuitive desideratum for counterfactual explanations
can be formulated based on the distance between the explanation and ground-
truth observations, defining a plausibility notion that is similar to the trust score
proposed in [15]): to guarantee useful (plausible) explanations, a counterfactual
example could be thus required to be close to existing instances from the same
class. Detecting whether an explanation satisfies this criterion thus becomes
similar to an outlier detection problem, where the goal is to have counterfactual
explanations that do not lie out of the distribution of ground-truth instances.

However, discriminating counterfactual explanations based on their distance
to ground-truth data does not seem to be good enough, as issues created by
classification artifacts can arise in dense training regions as well. Such artifacts
can be caused by a lack of robustness of the classifier (e.g. overfitting), or simply
because it is forced to make a prediction in an area he does not have much
information about. These issues may lead to classification regions that are close
to but not supported by any ground-truth data, which is problematic in the
context of interpretability.

In this context, a requirement for counterfactual explanations is proposed,
where the relation expected between an explanation and ground-truth data is
defined using the topological notion of path connectedness. In order to be more
easily understood and employed by a user, it is argued that the counterfactual
instance should be continuously connected to an observation from the training
dataset. The idea of this justification is not to identify the instances from the
training data that are responsible for the prediction of the counterfactual (such
as in the aforementioned work of [16]), but the ones that are correctly being
predicted to belong to the same class for similar reasons.

The following definition is thus introduced:

Definition 1 (Justification [21]). Given a classifier f : X → Y trained on
a dataset X, a counterfactual example e ∈ X is justified by an instance a ∈ X
correctly predicted if f(e) = f(a) and if there exists a continuous path h between
e and a such that no decision boundary of f is met.

Formally, e is justified by a ∈ X if: ∃ h : [0, 1] → X such that: (i) h is
continuous, (ii) h(0) = a, (iii) h(1) = e and (iv) ∀t ∈ [0, 1], f(h(t)) = f(e).

This notion can be adapted to datasets by approximating the function h with
a high-density path, defining ε-chainability, with ε ∈ R+: an ε-chain between e
and a is a finite sequence e0, e1, ... eN ∈ X such that e0 = e, eN = a and
∀i < N, d(ei, ei+1) < ε, with d a distance metric.

Definition 2 (ε-justification [21]). Given a classifier f : X → Y trained on
a dataset X, a counterfactual example e ∈ X is ε-justified by an instance a ∈ X
accurately predicted if f(e) = f(a) and if there exists an ε-chain {ei}i≤N ∈ XN

between e and a such that ∀i ≤ N, f(ei) = f(e).

Consequently, a justified (resp. unjustified) counterfactual explanation (writ-
ten JCF, resp. UCF) is a counterfactual example that does (resp. does not) sat-
isfy Definition 2. Setting the value of ε, ideally as small as possible to guarantee
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a good approximation by the ε-chain of function h of Definition 1, depends on
the considered problem (dataset and classifier) and can heavily influence the
obtained results. A discussion about this problem is proposed in Section 5.

Since connectedness in unordered categorical data can not be properly de-
fined, the notion of justification can not be directly applied to these domains.
Hence, we restrict the analysis of this paper to numerical data.

Figure 1 illustrates both the idea behind the notion of connectedness and the
issue it tries to tackle. The left picture illustrates an instance x whose prediction
by a binary classifier is to be interpreted, as well as two potential counterfactual
explanations, CF1 and CF2. CF2 can be connected to a ground-truth instance
a without crossing the decision boundary of f and is therefore justified. On the
contrary, CF1 is not since it lies in a classification region that does not contain
any ground-truth instance from the same class (green ”pocket”). In the right
picture, a classifier with low robustness creates classification regions that can
not be connected to any instance from the training data.

3.2 Implementation

For an efficiency purpose, it is possible to draw a link between connectedness and
density-based clustering. In particular, the well-known DBSCAN [8] approach
uses the distance between observations to evaluate and detect variations in the
density of the data. Two parameters ε and minPts control the resulting clusters
(resp. outliers), built from the core points, which are instances that have at least
(resp. less than) minPts neighbors in an ε-ball. Thus, having an instance being
ε-justified by another is equivalent to having them both belong to the same
DBSCAN cluster when setting the parameters minPts = 2 and same ε.

4 Procedures for Assessing the Risk of Unconnectedness

In this section, the two algorithms proposed by [21] and used in the experiments
and discussion are described: LRA (Local Risk Assessment) is a diagnostic tool
assessing the presence of unjustified regions in the neighborhood of an instance
whose prediction is to be interpreted; VE (Vulnerability Evaluation) assesses
whether or not a given counterfactual explanation is connected to ground-truth
data.

4.1 LRA Procedure

This section recalls the LRA procedure, used to detect unjustified classification
regions. Given a black-box classifier f : X → Y trained on the dataset X of
instances of X and an instance x ∈ X whose prediction f(x) is to be explained,
the aim is to assess the risk of generating unjustified counterfactual examples in a
local neighborhood of x. To do this, a generative approach is proposed that aims
at finding which regions of this neighborhood are ε-connected to instances of X
(i.e. verify Definition 2). The three main steps of the LRA procedure, described
below, are written down in Algorithm 1.
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Definition step. A local neighborhood of the instance x being examined is defined
as the ball of center x and radius the distance between x and the closest ground-
truth instance a0 correctly predicted to belong to another class.

Initial assessment step. A high number n of instances are generated in the
defined area and labelled using f . The instances predicted to belong to the class
f(a0), as well as a0, are clustered using DBSCAN (with parameters minPts = 2
and ε). The instances belonging to the same cluster as a0 are identified as JCF .

Iteration step. If some instances do not belong to the same cluster as a0, new
instances are generated in the spherical layer between a0 and a1, the second
closest ground-truth instance correctly predicted to belong to the same class.
Along with the previously generated instances, a0 and a1, the subset of the
new instances that are predicted to belong to the same class as a0 and a1 are
clustered. Again, new JCF can be identified. If a cluster detected at a previous
step remains the same (i.e. does not increase in size), it means that the procedure
has detected an enclosed unconnected region (pocket) and the cluster is therefore
labelled as UCF. This step is repeated when all instances of the initial assessment
step are identified either as JCF or UCF.

In the end, the LRA procedure returns nJ (resp. nU ) the number of JCF
(resp. UCF) originally generated in the local neighborhood defined in the Defi-
nition Step. If nU > 0, there exists a risk of generating unjustified counterfactual
examples in the studied area.

In particular, the following criteria are calculated:

Sx = 1nU>0 and Rx =
nU

nU + nJ
.

Sx labels the studied instance x as being vulnerable to the risk of having UCF
in the area (i.e. having a non-null risk). The risk itself, measured by Rx, describes
the likelihood of having an unjustified counterfactual example in the studied area
when looking for counterfactual examples. As these scores are calculated for a
specific instance x with a random generation component, their average values S̄
and R̄ for 10 runs of the procedure for each x and over multiple instances are
calulated.

4.2 VE Procedure

A variation of the LRA procedure, Vulnerability Evaluation (VE), is proposed to
analyze how troublesome unjustified regions are for counterfactual approaches.

The goal of the VE procedure is to assess the risk for state-of-the-art meth-
ods to generate UCF in regions where there is a risk. Given an instance x ∈ X,
the LRA procedure is first used to calculate the risk Rx and focus on the in-
stances where this risk is ”significant” (i.e. for instance where Rx > 0.25). Using
a state-of-the-art method, a counterfactual explanation E(x) ∈ X is then gener-
ated. To check whether E(x) is justified or not, a similar procedure as LRA is
used: instances are generated uniformly in the local hyperball with center E(x)
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Algorithm 1: LRA [21]

Require: x, f , X
1: Generate n instances in the ball B(x, d(x, a0))
2: Label these instances using f , keep the subset D of instances classified similarly

as a0
3: Perform DBSCAN over D ∪ {a0}
4: Identify the instances of D that belong to the same cluster as a0 as JCF.

Calculate current nJ

5: while Some instances are neither JCF nor UCF do
6: Generate new instances in the spherical layer defined by the next closest

ground-truth instance
7: Label these instances using f
8: Apply DBSCAN to the subset of these instances classified as f(a0), along with

previously generated instances and relevant ground-truth instances
9: Update nJ and nU

10: end while
11: return nJ , nU ;

Fig. 2. Illustration of the VE procedure for two counterfactual explanation candidates.
Left: CF1, which is not justified. Right: CF2, justified

and radius the distance between E(x) and the closest ground-truth instance b0
correctly predicted to belong to the same class as E(x). the DBSCAN algorithm
is then used with parameters minPts = 2 and same ε on the generated instances
that are predicted to belong to f(E(x)). E(x) is identified as a JCF if it belongs
to the same DBCSCAN cluster as b0 (cf. Definition 2).

If not, like with LRA, iteration steps are performed as many times as nec-
essary by expanding the exploration area to b1, the second closest ground-truth
instance predicted to belong to f(E(x)).

An illustration of the procedure in a 2-dimensional binary classification set-
ting is shown in Figure 2 for two counterfactual explanations CF1 and CF2
(blue dots), generated for the observation x (red dot). In the left picture, two
clusters (hatched areas) are identified by DBSCAN in the explored area (blue
dashed circle): CF1 and a, the closest training instance, do not belong to the
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same cluster, defining CF1 as unjustified. In the right picture, CF2 belongs to
the same cluster as a and is therefore defined as justified.

In the end, the VE procedure returns a binary value indicating whether
or not the analyzed counterfactual explanation E(x) is justified, written JE(x)

(JE(x) = 1 if E(x) is justified). Again, we also measure the average value J̄ of
JE(x) for multiple runs of the procedure for the instance x and over multiple
instances.

5 Experimental Study: Assessing the Risk of Unjustified
Regions

The two presented procedures LRA and VE can be used to analyze the uncon-
nectedness of classification regions. As explained earlier, setting the values of
n and ε is crucial for the experiments, as these parameters are central to the
definition and procedures used. Therefore, a first experiment and discussion (cf
Section 5.2) are conducted on this problem. Once adequate values are found, a
second experiment (see Section 5.3) is performed, where we discuss how exposed
different classifiers are to the threat unjustified classification regions. The link
between this notion and overfitting is also studied. Finally, in a third experiment
(cf. Section 5.4), the vulnerability of state-of-the-art post-hoc counterfactual ap-
proaches is analyzed, and we look into how they can minimize the problem of
unjustified counterfactual explanations.

5.1 Experimental Protocol

In this section, we present the experimental protocol considered for our study.

Datasets. The datasets considered for these experiments include 2 low-dimensional
datasets (half-moons and wine) as well as 4 real datasets (Boston Housing [14],
German Credit [7], Online News Popularity [10] Propublica Recidivism [18]).
These structured datasets present the advantage of naturally understandable
features and are commonly used in the interpretability (and fairness) literature.
All include less than 70 numerical attributes. As mentioned earlier, categorical
features are excluded from the scope of the study.

Classifiers. For each considered dataset, the data is rescaled and a train-test
split of the data is performed with 70%-30% proportion. Several binary clas-
sifiers are trained on each dataset: a random forest classifier, a support vector
classifier with Gaussian kernel, an XGboost classifier, a Naive Bayes classifier
and a k-nearest-neighbors classifier. Unless specified, the associated hyperpa-
rameters are chosen using a 5-fold cross validation to optimize accuracy. The
AUC score values obtained on the test set with these classifiers are shown in
Table 1. Several variations of the same classifier are also considered for one of
the experiments (Section 5.3), with changes in the values of one of the associated
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Dataset RF SVM XGB NB KNN 1-NN

Half-moons0.98± 0.01 0.99± 0.00 0.99± 0.00 0.95± 0.01 0.99± 0.00 0.95± 0.01
Wine 0.98± 0.01 0.99± 0.00 0.99± 0.00 0.95± 0.01 0.99± 0.00 0.95± 0.01
Boston 0.96± 0.02 0.97± 0.04 0.97± 0.03 0.87± 0.08 0.93± 0.06 0.85± 0.04
Credit 0.75± 0.05 0.64± 0.04 0.70± 0.08 0.66± 0.04 0.66± 0.02 0.55± 0.05
News 0.68± 0.02 0.68± 0.01 0.70± 0.02 0.65± 0.02 0.65± 0.02 0.55± 0.01
Recidivism 0.81± 0.01 0.82± 0.01 0.84± 0.01 0.78± 0.02 0.81± 0.02 0.68± 0.02

Table 1. AUC scores obtained on the test sets for a random forest (RF), support vector
classifier (SVM), XGBoost (XGB), naive Bayes classifier (NB) k-nearest neighbors
(KNN) and nearest neighbor (1-NN)

hyperparameters: the maximum depth allowed for each tree of the random for-
est algorithm, and the γ coefficient of the Gaussian kernel of the support vector
classifier.

Protocol. The test set is also used to run the experiments, as described earlier.
In Section 5.3, the LRA procedure is applied to each instance of the considered
test sets, and the scores S̄ and R̄ are calculated and analyzed for each dataset
and classifier. In Section 5.4, three post-hoc counterfactual approaches from
the state-of-the-art (HCLS [19], GS [20] and LORE [11]) are used to generate
explanations E(x) for each instance of the considered test sets, and the VE
procedure is applied to the obtained counterfactuals to calculate the scores J̄ ,
as well as the distance d(x,E(x)).

5.2 Defining the Problem Granularity: Choosing n and ε

As presented in [21] and mentioned above, the values of n and ε are crucial
since they define the notion of ε-justification and impact the average distance
between the generated instances. Choosing inadequate values for n and ε may
lead to having some unconnected regions not being detected as such and vice
versa.

These two values are obviously linked, as n defines, for a given x ∈ X, the
density of the sampling in the initial assessment step of the LRA procedure,
hence the average pairwise distance between the generated observations, and
therefore the value ε should be taking. Identifying an adequate value for ε de-
pends on the local topology of the decision boundary of the classifier, as well as
the radius of the hyperball defined in LRA (cf. Section 4.1). In practice, because
the instances Bx are generated in the initial assessment step before running DB-
SCAN, it is easier to set the value of ε to the maximum value of the distances of
B to their closest neighbors: ε = max

xi∈Bx

min
xj∈Bx\{xi}

d(xi, xj). Using this value, the

training instance a0 is guaranteed to be in an actual cluster (i.e. not detected
as an outlier), which is a desirable property of the approach: it is expected that
since is a0 correctly predicted, it should be possible to generate a close neighbor
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Fig. 3. Average Rx score for several instances of the half-moons dataset depending on
the value of n. The first two instances are selected to verify Sx = 1, while the last two
verify Sx = 0. After n reaches a certain value, Rx hardly changes anymore

classified similarly (in the same ”pocket”). The problem thus becomes of setting
the value of n alone.

In order to have the best performance, n should have the highest value as
possible. However, this also increases dramatically the running time of the algo-
rithm. Besides the complexity of the classifier’s decision boundary, the value of
n required to saturate the local space increases exponentially with the dimen-
sion of the problem. Furthermore, as the radius of generation increases during
the iteration steps, the number of instances should also increase to guarantee
constant space saturation across various steps. Instead, we choose to set a high
initial value of n at the first step, leading to an even higher complexity.

In this context, we are interested in identifying a value for n that properly
captures the complexity of the local decision boundary of the classifier without
generating an unrequired amount of instances. We thus look at the value of Rx

for several instances and several values of n to detect the threshold above which
generating more instances does not change the output of the LRA procedure.
Figure 3 illustrates this result for several instances of the half-moond dataset
(two with Sx = 1 and two with Sx = 0: the Rx score reaches a plateau after
a certain value of n. Using this assumption, the LRA procedure can be tested
with various values of n to ensure a reasonable value is chosen for the results of
the other experiments presented in the next section.

5.3 Detecting Unjustified Regions

While the existence and dangers of unjustified regions has been shown in [21],
the extent to which classifiers are vulnerable to this issue remains unclear.

Comparing the Vulnerability of Classifiers In Table 2 are shown the pro-
portion S̄ of the studied instance that have unjustified classification regions in
their neighborhood (LRA returning Sx = 1). Every classifier seems to be gener-
ating unjustified regions in the neighborhoods of test instances: in some cases,
as much as 93% of the tested instances are concerned (XGB classifier trained on
the German Credit dataset).

However, the extent to which each classifier is vulnerable greatly varies. For
instance, among the considered classifiers, the random forest and XGBoost al-
gorithms seem to be more exposed than other classifiers (average S̄ value across
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Fig. 4. Illustration of the LRA procedure applied to an instance of the half-moons
dataset. Left: RF with no maximum depth precised. Right: maximum depth allowed is
10

dataset resp. 0.63 and 0.54, vs. 0.39 for the SVM for instance). The learning
algorithm, and thus the associated complexity of the learned decision boundary,
heavily influences the creation of classification regions. A link with predictive
accuracy can thus be expected. This can be also observed in the results of the
Naive Bayes classifier: while this classifier seems to be the more robust to the
studied problem (average value of S̄ across all datasets equals 0.29), it should be
noted that it is also the classifier that performs the worst in terms of prediction
(besides 1-NN, cf. Table 1).

These results are further confirmed by the values of R̄ shown in Table 4,
which also give an indication of the relative size of these unjustified classification
regions: for instance, despite having similar values for S̄ on the German Credit
dataset, RF and XGboost have a higher R̄ values than KNN, indicating that the
formed unconnected regions are wider in average.

Differences in results can also be observed between datasets, since more com-
plex datasets (e.g. less separable classes, higher dimension...) may also lead
to classifiers learning more complex decision boundaries (when possible), and
maybe favoring overfitting. This phenomenom is further studied in the next
experiment.

Link Between Justification and Overfitting To further study the relation
between the creation of unjustified regions and the learning algorithm of the
classifier, we analyze the influence of overfitting over the considered metrics.
For this purpose, we attempt to control overfitting by changing the values of
the hyperparameters of two classifiers: the maximum depth allowed for a tree
for RF, and the γ parameter of the Gaussian kernel for SVM. For illustration
purposes, we apply the LRA procedure in a two-dimensional setting (half-moons)
to a classifier deliberately chosen for its low robustness (a random forest with
only 3 trees). Figure 4 shows a zoomed in area of the decision boundary of the
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Fig. 5. R̄ scores for RF (left) and SVM (right) classifiers on the Boston dataset for
various values of hyperparameters (resp. maximum number of trees and γ parameter
of the Gaussian kernel). ”None” (left) means no maximum tree depth restriction is set

classifier (colored areas, the green and purple dots represent training instances),
as well as the result of LRA for a specific instance x (yellow instance). In the
left figure, the considered classifier has no limitation on the depth of the trees
it can use, wereas in the right one this parameter is set to 10. As explained
earlier, LRA explores the local neighborhood of x (blue circle), delimited by its
closest neighbor from the training set correctly classified a0 (orange instance).
In the left figure, within this neighborhood, a green square region is detected as
an unjustified region (top left from x): there is no green instance in this region,
hence Sx = 1. However, in the right picture, this region is connected to green
instances: Sx = 0.

Quantitative results of this phenomenom are shown in Figure 5, which illus-
trates the evolution of S̄ and R̄ scores for the two mentioned classifiers (left:
RF; right: SVM). As expected, the more overfitting is allowed (i.e. when the
maximum tree depth of RF and when the γ parameter of the RBF kernel of
SVM increase), and the more prone to generate unjustified regions these two
classifiers seem.

However, it should be noted that models such as logistic regression or 1-
nearest neighbor (not appearing in Tables 2 and 3) have, by construction, no
UCF (S̄ = 0.0): a logistic regression creates only two connected classification
regions, and the predictions of a 1-NN classifier are by construction connected
to their closest neighbor from the training data, despite this classifier being
frequently referred to as an example of overfitting. Therefore, the notion of over-
fitting is not sufficient to describe the phenomenom of unconnectedness.

The tradeoff there seems to be between justification and accuracy (cf. Ta-
bles 1 and 2) seems to indicate that a lower complexity of the decision border
favors better justification scores for at the cost of predictive performance (cf.
Table 1 for the comparatively lower predictive performance of the 1-NN classi-
fier).
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Dataset RF SVM XGB NB KNN

Half-moons 0.37 0.00 0.05 0.00 0.02
Wine 0.21 0.08 0.15 0.08 0.15
Boston 0.63 0.29 0.62 0.44 0.25
Credit 0.93 0.76 0.93 0.27 0.92
News 0.85 0.72 0.86 0.57 0.68
Recidivism 0.81 0.50 0.61 0.36 0.73

Table 2. Proportion of instances being at risk of generating a UCF (S̄ score) over the
test sets for 6 datasets

Dataset RF SVM XGB NB KNN

Half-moons 0.07 (0.17) 0.00 (0.00) 0.01 (0.02) 0.0 (0.0) 0.00 (0.00)
Wine 0.01 (0.02) 0.02 (0.07) 0.00 (0.01) 0.01 (0.02) 0.01 (0.01)
Boston 0.16 (0.25) 0.06 (0.13) 0.14 (0.24) 0.07 (0.14) 0.03 (0.05)
Credit 0.44 (0.37) 0.10 (0.14) 0.45 (0.37) 0.06 (0.17) 0.31 (0.27)
News 0.35 (0.28) 0.18 (0.28) 0.33 (0.30) 0.12 (0.24) 0.37 (0.38)
Recidivism 0.26 (0.30) 0.14 (0.21) 0.21 (0.28) 0.08 (0.20) 0.20 (0.30)

Table 3. Average risk of generating an UCF (R̄) and standard deviations for 6 datasets

5.4 Vulnerability of Post-hoc Counterfactual Approaches

In the post-hoc context, because no assumption is made about the classifier nor
any training data, counterfactual approaches have been shown to be subject to
generating unjustified explanations [21]. The state-of-the-art approaches men-
tioned in Section 5.1 are applied to the considered datasets in order to assess
the extent of this risk.

The VE procedure is applied to the counterfactual explanations generated us-
ing state-of-the-art approaches for instances facing a significant justification risk
(constraint arbitrarily set to Rx ≥ 0.25) of the previously considered datasets,
on which a random forest classifier was trained. The results (J̄ score) are shown
in Table 4. In addition to Jx, the distance between each tested instance and
its generated counterfactual explanations are calculated, and represented in the
table by their average value d̄.

As expected, every considered counterfactual approach seems to be generat-
ing to some extent unjustified explanations: the Justification scores of the tested
approaches can even fall as low as 30% (GS on the Online News Popularity
dataset). However, some differences can be observed between the approaches:
for instance, HCLS and LORE seem to achieve better performance than GS in
terms of justification across all datsets (average J̄ across datasets equals resp.
0.74 and 0.91 for HCLS and LORE, against only 0.62 for GS). However, we ob-
serve that the average distance d̄ is also higher (resp. 1.38 and 1.46 for HCLS and
LORE, against 0.90 for GS). This can be explained by the fact that GS directly
minimizes a L2 distance (the considered d distance), while LORE minimizes a
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Dataset HCLS GS LORE
J̄ d̄ J̄ d̄ J̄ d̄

Half-moons 0.83 0.45 (0.27) 0.67 0.48 (0.26) 0.83 1.19 (0.18)
Boston 0.86 1.99 (0.88) 0.84 0.84 (1.03) 1.0 1.58 (0.98)
Credit 0.65 1.78 (0.94) 0.59 0.82 (0.71) 1.0 1.57 (1.11)
News 0.46 1.81 (0.75) 0.30 1.68 (0.99) 0.77 1.74 (0.83)

Recidivism 0.91 0.89 (1.08) 0.70 0.70(́1.09) 0.98 1.23 (0.90)

Table 4. Proportion of generated counterfactuals that are justified (J̄) for vulnerable
instances (Rx ≥ 0.25)

L0 distance in a local neighborhood. By looking for counterfactuals in the di-
rect proximity of x, GS thus tend to find unjustified regions more easily than
the other approaches, whereas looking further away from the decision boundary
probably enables LORE to favor explanations located closer to ground-truth
instances, therefore more frequently justified.

Another observation is that despite achieving better performance than GS by
trying to maximize the classification probability of the generated counterfactual,
HCLS still comes short in terms of justification. This tend to illustrate that
classification confidence, when available, is not a good way to detect unconnected
classification regions and guarantee justified explanations, some unconnected
regions probably having high classification confidence.

These results highlight that while classification confidence, when available,
does not seem to help in generating justified explanations, there seems to be
a tradeoff with the counterfactual distance, as LORE achieves in some cases
perfect justification scores (e.g. Boston and Credit datasets).

6 Conclusion

The justification constraint that is studied in this work comes from an intuitive
requirement explanations for machine learning predictions should satisfy, as well
as from the assumption that post-hoc counterfactual explanations are not able
to distinguish UCF from JCF. Results highlight that this vulnerability greatly
depends on the nature of the classifier, and that all learning algorithms are not
equally likely to form unconnected classification regions. In particular, control-
ling overfitting seems to be very important for some of the studied classifiers. In
light of this study, generating justified counterfactual explanations in the post-
hoc context seems complicated and using the training instances, when available,
is necessary. To reduce the impact of these issues, state-of-the-art approaches
may look for explanations located further away from the decision boundary.
However, this raises the question of explanation locality, as explanations located
far away from the decision boundary may be less tailored for each instance, and
thus less useful in the case of counterfactuals.

Despite the importance of justification, the question of whether this require-
ment is sufficient to guarantee useful explanations remains. In particular, ques-
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tions arise when a counterfactual explanation lies in a justified region where the
associated ground-truth instances are far away (e.g. out of distribution). In this
context, adding a distance constraint (as discussed in Section 3) to ensure plau-
sible justified explanations may constitute an interesting lead for future works.

Extending these notions to high-dimensional data (e.g. images) however needs
further research, as neither connectedness nor distance helps in guaranteeing
useful explanations. A good example of this is adversarial examples, which are
defined as being close to original observations and have been proven to be con-
nected to ground-truth instances in the case of deep neural networks but do not
constitute satisfying counterfactual explanations.

Finally, results about the link between justification and overfitting raise the
question of the accuracy of the classifier in these unconnected regions. In this
regard, future works include analyzing the connectedness of classification errors.
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