
Manufacturing Dispatching using Reinforcement
and Transfer Learning

Shuai Zheng(�), Chetan Gupta, and Susumu Serita

Industrial AI Lab, Hitachi America Ltd
Santa Clara, CA, USA

{Shuai.Zheng,Chetan.Gupta,Susumu.Serita}@hal.hitachi.com

Abstract. Efficient dispatching rule in manufacturing industry is key to
ensure product on-time delivery and minimum past-due and inventory
cost. Manufacturing, especially in the developed world, is moving to-
wards on-demand manufacturing meaning a high mix, low volume prod-
uct mix. This requires efficient dispatching that can work in dynamic
and stochastic environments, meaning it allows for quick response to
new orders received and can work over a disparate set of shop floor
settings. In this paper we address this problem of dispatching in manu-
facturing. Using reinforcement learning (RL), we propose a new design
to formulate the shop floor state as a 2-D matrix, incorporate job slack
time into state representation, and design lateness and tardiness rewards
function for dispatching purpose. However, maintaining a separate RL
model for each production line on a manufacturing shop floor is costly
and often infeasible. To address this, we enhance our deep RL model
with an approach for dispatching policy transfer. This increases policy
generalization and saves time and cost for model training and data col-
lection. Experiments show that: (1) our approach performs the best in
terms of total discounted reward and average lateness, tardiness, (2) the
proposed policy transfer approach reduces training time and increases
policy generalization.

Keywords: Reinforcement Learning · Transfer Learning · Dispatching

1 Introduction

In a manufacturing process, a production order moves through a sequence of
job processing steps to arrive at a final product. The problem of dispatching
is the assigning the next job to be processed for a given machine. Inefficient
scheduling and dispatching can cause past-due cost (past-due cost is the cost
when a job cannot be delivered on time) as well as inventory cost (inventory
cost is the storage cost when the job is finished before due time) to go up. It is
obvious that all manufacturing managers want on-time delivery and minimum
past-due and inventory cost. However, achieving these goals requires efficient
production scheduling that minimizes these costs. Furthermore, manufacturing
is moving towards a high mix low volume product mix, which makes this even

2 S. Zheng et al.

more challenging, due to an ever-evolving product mix, causing larger variations
in job types and job arrival rates.

Production scheduling problems can be categorized by shop configurations
and scheduling objectives. Depending on the number of processing machines,
there can be single-machine environment [1] and parallel-machine environment
[2]. Depending on the number of operations (or stages, steps) of each job, there
are single-operation and multi-operation environment [3]. Depending on the ob-
jective of scheduling, there are completion time based scheduling [4] (trying to
increase machine efficiency) and due date based scheduling [5] (trying to be
close to promised delivery dates). Multi-operation parallel-machine problems
can be solved through multi-agent algorithms or can be decomposed into solv-
ing several single-operation problems [6]. In this work, we focus on dynamic
dispatching for due date based objective, which has broader generalization and
can be used in different shop floor settings. Dynamic dispatching is also criti-
cal for predictive maintenance tasks [7, 8], which schedule machine maintenance
using data-driven and model-based approaches. Furthermore, dispatching only
schedules the imminent job with the highest priority and is particularly suit-
able for dynamic/stochastic environments due to its low computational time in
deployment/testing stage.

Traditionally to address the problem of dispatching, a lot of hyper-heuristics
have been proposed and shown to be effective and reusable in different shop
conditions [6]. Even though some exact solutions for deterministic scheduling
problems are available, manufacturing shop floor depends on heuristics. This
is because exact solutions are computationally expensive (and hence infeasible)
in deployment stage and cannot solve problems for dynamic and stochastic en-
vironments. Since heuristics are very problem-specific and usually achieved by
trial and error, hyper-heuristics [6] which automate the design of heuristics at-
tract a lot of interest and have been shown effective in manufacturing as well as
other industries such as: bin packing [9], vehicle routing [10], project schedul-
ing [11]. Many hyper-heuristics are based on machine learning approaches, such
as neural networks, logistic regression, decision trees, Support Vector Machines,
genetic algorithms, genetic programming, reinforcement learning.

Recently, existing works have used deep reinforcement learning for scheduling
problems [12, 13]. For dispatching purpose, we propose a new design to formu-
late the shop floor state as a 2-D matrix, incorporate job slack time into state
representation. We also design lateness and tardiness rewards function for rein-
forcement learning. In a manufacturing shop, there are many similar production
lines, where designing and maintaining a separate reinforcement learning model
for each line is not feasible. To address this, we propose a transfer approach
for dispatching policy using manifold alignment. Unlike discriminant subspace
learning [14–16] and sparse enforced learning [17–19] where the purpose is to
separate classes, manifold alignment [20] learns a subspace by matching the lo-
cal geometry and preserving the neighborhood relationship within each space.
In summary, the contributions of this work are:

Manufacturing Dispatching using Reinforcement and Transfer Learning 3

1. The reinforcement learning module uses deep learning and policy gradient
to minimize job due related cost. Compared to existing work, the novelty is
that we formulate the shop floor state as a 2-D matrix, incorporate job slack
time into state representation, and design lateness and tardiness rewards
function for dispatching purpose.

2. The transfer learning module transfers dispatching policy between shop
floors using manifold alignment. Compared to existing work, the novelty is
that our approach formulates shop floor states transfer using manifold align-
ment, and we design a method to recover actions from sequence of states.

To test our approach, we build a simulator to simulate dynamic factory set-
tings, where we can change factory configurations and job characteristics, such
as job queue length, machine processing capacity, job arrival distribution. A
simulator is needed since it is very difficult to run live experiments on an ac-
tual production line. Another option is to somehow use actual data in a shop
floor, however this is a challenge: the data collected on the shop floor is mainly
state and scheduling decision record data which is static in nature and cannot
provide feedback on the scheduling decisions. These data can be used for hyper-
heuristics rules extraction, but not for dynamic environment [6]. Furthermore,
corporations are reluctant to share real data, because these data include trade
secrets and sensitive financial information. In fact, most published works for
dynamic production scheduling are based on simulators [6]. Using simulator to
pre-train model and then deploying it into real factories can further reduce data
collection and training effort.

2 Related work

2.1 Production scheduling

Hyper-heuristics are promising to handle dynamic and stochastic scheduling
problems and have recently emerged as a powerful approach to automate the de-
sign of heuristics for production scheduling [6]. The basic idea of hyper-heuristics
is to learn scheduling rules from a set of very good training scheduling instances.
These training instances are considered optimal or perfect. Hyper-heuristics can
then replicate these scheduling instances as closely as possible. Depending on
the learning method, hyper-heuristics can be classified into supervised learning
and unsupervised learning. Examples of supervised learning hyper-heuristics in-
clude neural networks [21], logistic regression [22], decision trees [23], Support
Vector Machines [24], etc. Genetic algorithms (GA) and Genetic Programming
(GP) are evolutionary computation methods and have been used for dynamic
job shop scheduling problems. Reinforcement learning is an efficient algorithm to
learn optimal behaviors through reward feedback information from dynamic en-
vironments [13]. TD(λ) based reinforcement learning was used for manufacturing
job shop scheduling to improve resource utilization [25]. Resource scheduling for
computer clusters is also very related, such as Tetris [26] and resource scheduling
in HPC [27]. RL-Mao [12] uses policy gradient reinforcement learning to reduce

4 S. Zheng et al.

computer job slowdown. The difference of our work and RL-Mao lies in that
our work integrates manufacturing job slack time into state representation and
the objective functions using lateness and tardiness are specifically designed for
manufacturing dispatching.

2.2 Reinforcement learning background

In reinforcement learning, an agent interacts with an environment E over many
discrete time steps [28]. The state space of E is defined within S. At each time
step t, the agent receives a state st ∈ S and performs an action at ∈ A following
a policy π, where A defines the action space of this agent. The agent receives
a reward rt for this action and a new state st+1 is then presented to the agent.
The policy π is a mapping function from states st to at, denoted by π(at|st),
which gives the probability of taking action at. This process continues until the
agent reaches a termination state or time t exceeds a maximum threshold. The
cumulative discounted reward starting from time t is defined as:

Rt =

∞∑
k=0

γkrt+k, (1)

where γ ∈ (0, 1] is a discounted factor. The goal of a reinforcement agent is to
obtain a policy which maximizes the expected total discounted reward starting
from time t = 0:

J(π) = E[R0|π]. (2)

In policy-based model-free reinforcement learning, policy is directly param-
eterized as a function from states to actions, π(a|s; θ), where parameter θ is
updated using gradient ascent on E[Rt|π]. One example of this category is the
REINFORCE algorithm [29, 30]. Using the policy gradient theorem [29], the gra-
dient with respect to θ can be given as ∇θ log π(at|st; θ)Rt, which is an unbiased
estimate of ∇θE[Rt|π]. In order to reduce the variance of this estimate, we can
subtract a baseline from the return, where baseline bt(st) is a learned function
of state. The resulting gradient is thus given as

∇θ log π(at|st; θ)(Rt − bt). (3)

The term Rt − bt is used to scale the policy gradient and can be seen as the
advantage of action at in state st.

3 Dispatching with reinforcement learning

3.1 Problem description

Objective. Dispatching performance can be evaluated in terms of lateness L
and tardiness TA. The objective of this problem is to minimize the average

Manufacturing Dispatching using Reinforcement and Transfer Learning 5

Job queue

Machine

EnvironmentAgent
Job queue

state

Machine
state

Deep
Model

State 𝑠

Action 𝑎

Observe state 𝑠

Reward 𝑟

Fig. 1: Overall design of Deep Manufacturing Dispatching (DMD).

lateness and tardiness of all jobs. For one single job, let the completion time be
c. Lateness is the absolute difference between job due time and job completion
time:

L = |c− d|, (4)

where L ∈ [0,+∞). Thus lateness considers both inventory and past-due cost.
Tardiness only considers the lateness when the job is late. Tardiness TA is defined
as:

TA = max(c− d, 0), (5)

where TA ∈ [0,+∞). Tardiness focuses on past-due cost, but not inventory cost.
Constraints. Since this is a single-operation environment, there is no prece-

dence constraint between jobs/operations. Disjunctive constraint is enforced in
this problem, so that no two jobs can be processed at the same time. If the job
is being processed, it cannot be paused. All jobs are equally important.

3.2 Design

Figure 1 shows the overall design of proposed Deep Manufacturing Dispatching
(DMD). The environment includes job queue and processing machine. At each
time step, reinforcement learning agent observes a state s, which includes job
queue state and machine state (schedule of next T time steps), then outputs a
probability vector with respect to each action using a deep learning model as
function approximator. The agent will then perform action a with the highest
probability and receive a reward r from the environment.

There are n job slots and m backlog slots. Each job has a processing time
(job length) p and a due time d. At each time step, the probability of arriving
a new job is λ ∈ (0, 1). When a job arrives, it will be placed on one of the n job
slots randomly. If job slots are full, the job will be placed on backlog slots. For
jobs placed on backlog slots, only job count can be seen and those jobs cannot
be selected by dispatcher. As the backlog design for computer jobs in [12], it
is reasonable that the reinforcement agent only considers jobs in job slots, not
those on backlog slots, because jobs in job slots arrive earlier and get higher
priority. Let tcurr indicate current time. Slack time slack of a job is defined as:

slack = d− tcurr − p. (6)

6 S. Zheng et al.

1

1

1

1

0

1

1

1

0

0

1

0

0

0

0

1

1

0

0

0R
u

n
n

in
g

jo
b

s

P
ro

ce
ss

in
g

ti
m

e

Machine state Job queue state

Ti
m

e

1

1

1

0

0

Job slot 1 2 3 4 Backlog 1 2

0

0

0

1

0

0

-1

-1

0

-1

0

0

1

1

0

Im
ag

e
re

p
re

se
n

ta
ti

o
n

Sl
ac

k
ti

m
e

1

1

1

1

1

0

0

0

1

1

1

0

0

0

0

0

Fig. 2: State representation: this state looks T = 5 time steps ahead of current
time and slack time array length is Z = 3; there are n = 4 job slots and m = 10
backlog slots. The machine state (schedule of next T time steps) tells that the
next 4 time steps have been scheduled. For the job in job slot 1, p = 3, slack = 1;
for the job in job slot 3, p = 2, slack = −1. There are 8 jobs waiting in backlog.
Different colors in machine state represent different jobs.

If slack > 0, it means that if this job is started now, it will be completed before
its due time; if slack < 0, it means that it will be completed after its due time.
We now explain the design details of DMD elements: state space, action space,
reward, training.

State space. State space includes both states of the machine and job queue.
At any time step, we consider the states T time steps ahead and we use a
Z length array to represent the slack time. We use a 2-D matrix to represent
machine state (schedule of next T time steps) and job queue state. One example
is shown in Figure 2. Value 1 in machine state means that the machine at that
time step has been allocated, and value 0 means that the machine will be idle.
As time proceeds one time step, the T -length array shifts up by one unit and a
new 0 value is appended to the bottom. Job queue state consists of n job slots
and m backlog. Different colors in machine state indicate different jobs.

Each job slot is represented using two arrays: processing time and slack time.
The processing time array is represented using a T length array, with the number
of 1s indicating job length p. The slack time is represented using a Z length array,
where 1 means positive slack and −1 means negative slack. The sum of slack
time array represents job slack.

Backlog state is represented by several T length array, with a total of m
slots, where each slot represents a job. In Figure 2, backlog is represented using
2 5-length array and there are 8 jobs in backlog. The 0s under machine state
and backlog do not represent slack time and are padded to make the state as
a complete 2-D matrix. There are 2 benefits using this 2-D representation: 1).
2-D representation can capture the relationship between job characteristics and
machine status, and we can use deep learning method to discover hidden patterns
from 2-D representations; 2). we can represent schedule in T time steps ahead
of time.

Manufacturing Dispatching using Reinforcement and Transfer Learning 7

Action space. At each time step, the dispatcher performs multiple actions
to select a subset of jobs from n job slots until an invalid or void action is
selected. The action a is a subset of {∅, 1, ..., n}, where ∅ is a void action and
no job slot is selected. Void action allows dispatcher to save more resources for
larger jobs.

We let the dispatcher make a decision at each time step, instead of only when
the machine is idle. This is because jobs are scheduled T time steps ahead. The
decision of the dispatcher is to decide which job to allocate within the next T
time step, not for which job to run next immediately, so we do not consider the
machine is idle or not. Instead, we consider the schedule T time steps ahead.

Reward. We design the reward at each time step with respect to lateness
and tardiness as:

rL = −
∑
j∈P

Lj
pj
, (7)

rTA = −
∑
j∈P

TAj
pj

, (8)

where P is set of jobs that are currently being processed by the machine. Sum-
mation of rL and rTA over all time steps for the running jobs equals to the total
lateness and tardiness.

Training. We run the simulator multiple times to get a batch of trajectories.
At each time t, we record the state st, action at and reward rt. The discounted
reward Rt at time t can then be computed using Eq.(1). bt is a baseline function,
which can be the average reward at time t of multiple trajectories.

3.3 Scalability and generalization

The complexity comes from training and deployment/testing stage. In training
stage, the computational time mainly depends on the training of reinforcement
learning agent. From Figure 3, 4, we found that the objective function converges
fast. Pre-training with simulated data, transfer learning and other accelerated
computing [31] can further reduce training time. In deployment/testing stage,
the computational time is very fast and the same as testing time of a deep neural
network. This ensures the quick response to different shop floor conditions.

4 Dispatching policy transfer

In reinforcement learning area, some approaches using manifold learning for
cross-domain transfer learning [32–34] have been applied in games and appren-
tice learning, where control of games, such as Cart Pole and Simple Mass, shares
similar control mechanism to balance an object. However, for dispatching prob-
lems, due to the complexity of manufacturing settings, it is not straightforward
to transfer dispatching rules among factories or product lines. In our proposed
Deep Manufacturing Dispatching (DMD) framework, the following features of

8 S. Zheng et al.

Algorithm 1 Policy transfer learning.

Input: Source environment Ex, target environment Ey, source optimal policy πx∗.
Output: Target optimal policy πy∗.
1: Find state projection χ: Sx → Sy using Algorithm 2.
2: Following optimal policy πx∗, generate source state trajectories, {sx00, sx01, ...},
{sx10, sx11, ...}, ...

3: Compute target state trajectories in Sy, {sy00, s
y
01, ...}, {s

y
10, s

y
11, ...},..., using Eq.(9).

4: Recover policy πy using Algorithm 3.
5: Fine-tune policy πy and get optimal policy πy∗.

the training data will affect the data distribution: 1. factory setting parameters,
which are used to describe job queue states and machine states, including length
of processing time array T , length of slack time array Z, number of job slots
n, number of backlog slots m, etc.; 2. job characteristics parameters, such as
job length distribution, job arrival speed, job due time distribution. To apply
a trained policy in a new factory setting or when job characteristics changes,
knowledge transfer would greatly improve the performance of learning by avoid-
ing expensive data collection process and reducing training time.

Given source environment Ex with state space Sx and action space Ax, tar-
get environment Ey with state space Sy and action space Ay, source optimal
policy πx∗(a|s) is already learned. Transfer learning can be used to learn tar-
get optimal policy πy∗(a|s). There are two types of policy transfer: (1) same-
environment transfer, where factory setting parameters are not changed, but job
characteristics parameters are changed; (2) cross-environment transfer, where
factory setting parameters are changed. For cross-environment transfer, the job
queue and machine states are changed, and input dimension of source policy is
different from the input dimension of target policy, so source policy cannot be
applied directly in new environment. To successfully and effectively transfer πx∗

to πy∗, we propose the following transfer strategy as shown in Algorithms 1.
In step 1, we want to find a state projection χ, so that for any source state

sx ∈ Sx, a corresponding target state is given as:

sy = χsx. (9)

We will introduce how to find this projection χ in Algorithm 2. Using computed
target environment trajectories from step 3, step 4 recovers policy πy using
Algorithm 3.

Find projection χ. Manifold alignment [20] learns a subspace by matching
the local geometry within source space and target space. Given some random
source states sx0 , s

x
1 , ..., random target states sy0, s

y
1, ..., manifold alignment looks

for two projections α and β to minimize cost function:

C(α, β) =µ
∑
i,j

(αT sxi − βT s
y
j)2W i,j + 0.5

∑
i,j

(αT sxi − αT sxj)2W i,j
x

+ 0.5
∑
i,j

(βT syi − β
T syj)2W i,j

y , (10)

Manufacturing Dispatching using Reinforcement and Transfer Learning 9

Algorithm 2 Find projection χ using manifold alignment.

Input: Random source states sx0 , s
x
1 , ..., random target states sy0 , s

y
1 , ...

Output: Projection χ for state transfer Sx → Sy.
1: Compute Wx,Wy,W using Eqs.(11,13)
2: Compute Lx, Ly using Eq.(21).
3: Compute Ω1, Ω2, Ω3, Ω4 using Eq.(23).
4: Formulate matrix L and Z using Eq.(20).
5: Solve Eq.(19).
6: Compute χ using Eq.(24).

where α and β project source states and target states into a space of dimension
dshare. This is also similar to the idea in [35, 36], where different views of images
use a shared regression coefficient. (αT sxi −αT sxj)2W i,j

x minimizes the difference

of sxi and sxj with weight W i,j
x . W i,j

x can be computed using the kernel function
in Euclidean space:

W i,j
x = exp(−‖sxi − sxj ‖). (11)

Similarly, (βT syi −βT s
y
j)2W i,j

y minimizes the difference of syi and syj with weight

W i,j
y , which can be computed using Eq.(11) similarly.

(αT sxi −βT s
y
j)2W i,j minimizes the difference of sxi and syj in the shared space

with weight W i,j . To compute W i,j , we can compare their knn local geometry
matrix. Knn local geometry matrix Rsxi is defined as a (k+ 1)× (k+ 1) matrix,
with the (k1, k2)-th element as:

Rsxi (k1, k2) = ‖zk1 − zk2‖, (12)

where z = {sxi , z1, z2, ..., zk}, zk1 and zk2 are the k1-th and k2-th nearest neigh-
bors, ‖zk1 − zk2‖ is Euclidean distance of zk1 and zk2 . Rsyj can be computed

similarly using Eq.(12). W i,j can then be given as:

W i,j = exp(−dist(Rsxi , Rsyj)), (13)

dist(Rsxi , Rs
y
j
) = min

1≤h≤k!
min(dist1(h), dist2(h)), (14)

where dist(Rsxi , Rs
y
j
) is the minimum distance of k! possible permutations of

the k neighbors of sxi and syi . The distances of h-th permutation dist1(h) and
dist2(h) is given as:

dist1(h) = ‖{Rsyj }h − w1Rsxi ‖F , (15)

dist2(h) = ‖Rsxi − w2{Rsyj }h‖F , (16)

w1 = TrRTsxi {Rsyj }h/TrRTsxi Rs
x
i
, (17)

w2 = Tr{Rsyj }
T
hRsxi /Tr{Rsyj }

T
h {Rsyj }h, (18)

10 S. Zheng et al.

Algorithm 3 Recover policy πy.

Input: State trajectories {sy00, s
y
01, ...}, {s

y
10, s

y
11, ...},...

Output: Policy πy.
1: Compute action trajectories in Ay, {ay00, a

y
01, ...}, {a

y
10, a

y
11, ...}, ..., using Eq.(25).

2: Train πy with a deep model by using state trajectories as input feature, action
trajectories as output class labels.

where Tr is matrix trace operator, w1 and w2 are two weights terms.
Minimizing cost function Eq.(10) can be formulated as:

C(φ) = φTZLZTφ, (19)

where

φ =

(
α
β

)
, Z =

(
X 0
0 Y

)
, L =

(
Lx + µΩ1 −µΩ2

−µΩ3 Ly + µΩ4

)
. (20)

Columns of X are vector representations of state of sx0 , s
x
1 , ...; columns of Y are

vector representations of state of sy0, s
y
1, ...; Lx and Ly are given as:

Lx = Dx −Wx, Ly = Dy −Wy, (21)

where Dx and Dy are diagonal matrix:

Dii
x =

∑
j

W ij
x , D

ii
y =

∑
j

W ij
y . (22)

Ω1 and Ω4 are diagonal matrices. Ω2 is the same as W , Ω3 is the same as the
transpose of W . Ω1, Ω2, Ω3 and Ω4 are given as:

Ωii1 =
∑
j

W ij , Ωij2 = W ij , Ωij3 = W ji, Ωii4 =
∑
j

W ji. (23)

dshare is a tuning parameter indicating the size of the shared space. Finally, χ
is given as:

χ = βT†αT , (24)

where † is matrix pseudo inverse.
Recover policy πy. Algorithm 3 shows how to recover policy πy given state

trajectory {sy00, s
y
01, ...}, {s

y
10, s

y
11, ...},... We know that when at state sy0(t−1), an

action ay0(t−1) ∈ A
y was taken and then the state evolved from sy0(t−1) to sy0t.

However, we cannot directly get the action ay0(t−1) by comparing sy0(t−1) and sy0t.

Our approach is to try all possible actions in Ay and record the states s̃y0t(a)

after taking each action, then compare states s̃y0t(a) with sy0t. To compute s̃y0t(a),

Manufacturing Dispatching using Reinforcement and Transfer Learning 11

when action a is taken, we remove the a-th job in job queue and set it to be 0s
in matrix sy0(t−1). We use the following equation to find the ay0(t−1):

ay0(t−1) = arg min
a∈Ay

‖s̃y0t(a)− sy0t‖, (25)

where ‖s̃y0t(a)− sy0t‖ is distance between states s̃y0t(a) and sy0t.
Using Eq.(25), we can find action trajectories {ay00, a

y
01, ...}, {a

y
10, a

y
11, ...}, ...

We initialize the target policy πy using a deep model, such as DNN or Deep
CNN, and train policy πy as a classifier from sy to a corresponding ay.

5 Experiments

5.1 Experiment setup and evaluation metrics

Experiment settings. Unless otherwise noted, the default setting is given as
below: the machine looks T = 15 time steps ahead, length of slack time array is
Z = 5, number of job slots is n = 10, number of backlog slots is m = 60. We
test a set of different values for the following job characteristics parameters:

1. Job arrival speed λ ∈ (0, 1) is the probability of arriving a new job at each
time step, with default λ = 0.5.

2. Small job probability psmall indicates the probability that the new job
length is short, with default psmall = 0.8. The short job length distribution
is a random number in [1, 2]; the long job length distribution is a random
number in [6, 10].

3. Urgent job probability purgent indicates probability of the job slack time
is very short, with default purgent = 0.5. When the job arrives, the urgent
job slack time distribution is a random number in [1, 5]; the non-urgent job
slack time distribution is a random number in [5, 10].

At any time step, if the job queue is full, the new job will be dropped, a
penalty −10 will be added to reward rt. We use Deep Neural Network (DNN) to
model policy πa|s;θ. The input is state representation from Figure 2. The output
is a probability vector of length same as action space A. The activation function
in hidden layer is rectified linear unit and the activation function in the last layer
is Softmax. The DNN network structure we use is 2 hidden layers with 128 and
64 neurons respectively.

Training and testing data. For each experiment, we use the same setting
to generate 10 random trajectories for training and testing respectively. Then
we train each comparing method on the same training data and test it on the
same testing data.

Evaluation metrics. To evaluate the performance and business impact, we
use total discounted reward (Eq.(2)) and average lateness (Eq.(4)), tardiness
(Eq.(5)). Total discounted reward includes the penalty when a job was dropped
if the job queue is full. Average lateness and tardiness only consider those jobs
that are successfully finished, which are straightforward and valuable to busi-
ness users. The reported results are the average values over 10 random testing
trajectories.

12 S. Zheng et al.

0 1000 2000
Epochs

150

100

50

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

Proc+Slack
Proc
Slack

(a) Total reward.

0 1000 2000
Epochs

3

4

5

6

7

8

La
te

ne
ss

 L

Proc+Slack
Proc
Slack

(b) Average lateness.

Fig. 3: Effectiveness of state presentation. “Proc+Slack”: using both Processing
time and Slack time of Job queue in Figure 2. “Proc”: using only Processing
time. “Proc”: using only Slack time.

Table 1: Total discounted reward using different objective and trajectory length.

Lateness objective Tardiness objective

Trajectory length 50 100 150 200 50 100 150 200

EDF -65.05 -116.06 -215.65 -513.53 -57.03 -95.67 -192.64 -493.14
LST -77.11 -144.45 -260.93 -624.76 -69.09 -130.97 -247.45 -611.28
Random Forest -65.05 -115.47 -211.37 -433.40 -57.03 -92.46 -195.20 -410.39
SVM -65.05 -115.47 -212.48 -348.01 -57.03 -92.46 -185.50 -324.99
Neural Network -65.05 -115.47 -164.58 -238.31 -57.03 -92.46 -137.60 -199.19
Tetris -21.65 -89.37 -73.66 -154.15 -8.93 -16.67 -24.46 -102.53
RL-Mao -7.00 -57.39 -250.51 -212.32 -38.86 -118.54 -223.05 -370.97
DMD -0.51 -34.47 -63.30 -133.14 -0.22 -4.09 -9.43 -14.55

5.2 Effectiveness of state presentation Figure 2

Figure 3 shows the effectiveness of combining processing time and slack time
information in state presentation (Figure 2). Combining both processing and
slack time gives the highest total discounted lateness reward and lowest aver-
age lateness. Different to computer job resource management [12], slack time is
important for manufacturing dispatching.

5.3 Comparison with existing algorithms

We compare the proposed Deep Manufacturing Dispatching (DMD) with 7 other
dispatching policies: 2 due time related manual designed rules (EDF for Earliest-
Due-First, LST for Least-Slack-Time), 3 hyper-heuristics using machine learning
(random forest, SVM, and neural network with 2 hidden layers), and reinforce-
ment learning based RL-Mao [12] and Tetris [26]. For hyper-heuristics, under
each experiment setting, we choose the best heuristic rule in terms of average
lateness or tardiness as ground truth rule.

Table 1 and 2 show DMD gets the highest reward and lowest average lateness
and tardiness. Unless other noted, the default trajectory length is 100 time steps.

Manufacturing Dispatching using Reinforcement and Transfer Learning 13

Table 2: Average lateness and tardiness using different objective and trajectory
length.

Average lateness Average tardiness

Trajectory length 50 100 150 200 50 100 150 200

EDF 5.29 4.44 7.02 11.68 5.77 5.38 8.71 13.89
LST 6.71 5.48 8.26 13.80 7.07 6.21 9.31 15.35
Random Forest 5.29 4.38 5.89 9.03 5.77 5.40 6.69 10.66
SVM 5.29 4.38 5.48 7.32 5.77 5.40 6.72 8.70
Neural Network 5.29 4.38 4.37 5.23 5.77 5.40 5.29 7.33
Tetris 6.13 8.08 5.73 8.20 8.25 14.17 6.20 10.07
RL-Mao 5.29 6.39 7.35 8.06 7.78 9.10 9.21 10.43
DMD 2.11 3.16 3.60 5.01 1.51 2.24 3.68 4.14

Table 3: Total discounted lateness reward with various job characteristics.

Job arrival speed λ Small job psmall Urgent job purgent

0.1 0.3 0.5 0.7 0.9 0.2 0.5 0.8 0.1 0.5 0.9

EDF -31.12 -96.99 -116.06 -317.59 -415.87 -305.49 -246.97 -116.06 -71.92 -116.06 -115.08
LST -31.12 -126.23 -144.45 -378.46 -422.32 -316.67 -278.47 -144.45 -75.77 -144.45 -120.12
Random Forest -31.12 -78.22 -115.47 -205.24 -246.33 -106.16 -106.33 -115.47 -71.15 -115.47 -111.95
SVM -31.12 -78.66 -115.47 -208.10 -131.94 -154.18 -124.25 -115.47 -71.15 -115.47 -111.95
Neural Network -31.12 -78.66 -115.47 -219.09 -260.66 -111.56 -150.48 -115.47 -71.15 -115.47 -111.95
Tetris -28.39 -83.46 -89.37 -53.08 -107.22 -70.08 -48.26 -89.37 -68.74 -89.37 -69.85
RL-Mao -13.79 -58.95 -57.39 -136.36 -178.74 -99.27 -74.24 -57.39 -49.70 -57.39 -48.11
DMD -11.12 -14.48 -34.47 -62.37 -106.70 -56.33 -43.26 -34.47 -38.45 -34.47 -36.86

In manufacturing scheduling, where job frequency is not as high as computer
jobs, this trajectory length is reasonable. We can see from Table 1 that as the
length of trajectory increases, the total discounted reward decreases overall.
Table 3 and 4 show total discounted reward and average lateness with different
settings of λ, psmall and purgent. Overall, for 19 settings (8 settings in Tables
1,2 and 11 settings in Tables 3,4), DMD gets best results for 18 settings on
total discounted reward and 16 settings on average lateness and tardiness. Best
performing methods in each column are in bold.

5.4 Dispatching policy transfer

In step 1 of Algorithm 1, we generate 2000 random states from source environ-
ment and target environment respectively for each transfer setting. The follow-
ing four transfer learning settings are considered: (1). Same-environment: Source
λ = 0.5; Target λ = 0.7. (2). Same-environment: Source λ = 0.5, psmall = 0.8;
Target λ = 0.7, psmall = 0.5. (3). Cross-environment: Source n = 10; Target
n = 15. (4). Cross-environment: Source n = 10, m = 60; Target n = 15, m = 30.
In all figures, noTransfer curve is trained from scratch under target setting,
Transfer curve is initialized using the output of Algorithm 3 under source set-

14 S. Zheng et al.

Table 4: Average lateness with various job characteristics.

Job arrival speed λ Small job psmall Urgent job purgent

0.1 0.3 0.5 0.7 0.9 0.2 0.5 0.8 0.1 0.5 0.9

EDF 5.33 5.00 4.44 16.29 19.41 21.05 12.83 4.44 3.26 4.44 4.67
LST 5.33 6.28 5.48 20.89 22.54 21.18 15.00 5.48 4.00 5.48 4.94
Random Forest 5.33 4.00 4.38 8.21 12.73 8.11 5.42 4.38 2.88 4.38 4.32
SVM 5.33 4.16 4.38 8.21 4.02 9.47 5.68 4.38 2.88 4.38 4.32
Neural Network 5.33 4.16 4.38 10.30 15.43 7.61 6.36 4.38 2.88 4.38 4.32
Tetris 5.33 7.67 8.08 6.58 12.78 7.75 6.30 8.08 7.68 8.08 6.26
RL-Mao 4.50 6.65 6.39 9.35 10.87 11.62 8.19 6.39 5.15 6.39 5.83
DMD 3.45 3.21 3.16 4.51 9.74 7.70 4.32 3.16 4.55 3.16 4.03

0 500 1000 1500 2000
Epochs

300

200

100

0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

noTransfer
Transfer

(a) Setting 1.

0 500 1000 1500 2000
Epochs

6

8

10

12

14

La
te

ne
ss

 L

noTransfer
Transfer

(b) Setting 1.

0 500 1000 1500 2000
Epochs

280

260

240

220

200

180

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d
noTransfer
Transfer

(c) Setting 2.

0 500 1000 1500 2000
Epochs

16.5

17.0

17.5

18.0

La
te

ne
ss

 L

noTransfer
Transfer

(d) Setting 2.

0 500 1000 1500 2000
Epochs

200

150

100

50

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

noTransfer
Transfer

(e) Setting 3.

0 500 1000 1500 2000
Epochs

4

6

8

10

La
te

ne
ss

 L

noTransfer
Transfer

(f) Setting 3.

0 500 1000 1500 2000
Epochs

200

150

100

50

0

To
ta

l D
isc

ou
nt

ed
 R

ew
ar

d

noTransfer
Transfer

(g) Setting 4.

0 500 1000 1500 2000
Epochs

2

4

6

8

10

12

La
te

ne
ss

 L

noTransfer
Transfer

(h) Setting 4.

Fig. 4: Policy transfer evaluation using Deep Manufacturing Dispatching (DMD).

ting, then trained under target setting. Figure 4 shows total discounted reward
and average lateness of the 4 transfer settings using DMD. We find that policy
transferring reduces training time and gives larger total discounted reward and
smaller average lateness compared to training from scratch. Table 5 shows the
results using 3 hyper-heuristics. Best results are highlighted for each transfer
setting. Note that, as mentioned in Section 5.1, dropped job penalty is con-
sidered in total discounted reward, but not in average lateness. We find that
policy transfer gives competitive or better results than training from scratch
using hyper-heuristics. This shows the effectiveness of Algorithm 1.

6 Conclusion

Dispatching is a difficult yet important problem. It is not straightforward due
to the complexity of manufacturing settings. We showed the promising applica-

Manufacturing Dispatching using Reinforcement and Transfer Learning 15

Table 5: Policy transfer evaluation for hyper-heuristics.

noTransfer Transfer

Transfer setting 1 2 3 4 1 2 3 4

Total
discounted
lateness

Random Forest -205.24 -216.44 -120.22 -120.22 -140.02 -205.97 -115.47 -115.47
SVM -208.10 -189.27 -115.47 -115.47 -128.26 -213.40 -115.47 -115.47
Neural Network -219.09 -229.46 -114.15 -121.65 -174.52 -204.55 -115.47 -115.47

Average
lateness

Random Forest 8.21 14.05 4.63 4.63 5.08 10.63 4.38 4.38
SVM 8.21 13.05 4.38 4.38 5.13 10.96 4.38 4.38
Neural Network 10.30 16.74 4.38 4.72 7.00 13.40 4.38 4.38

tion of combining reinforcement learning and transfer learning in manufacturing
industry. The transfer learning module increases the generalization of learned
dispatching rules and saves cost and time for data collection and model training.

References

1. Park, J., Nguyen, S., Zhang, M., Johnston, M.: Genetic programming for or-
der acceptance and scheduling. In: Evolutionary Computation (CEC), 2013 IEEE
Congress on. pp. 1005–1012. IEEE (2013)

2. Jakobović, D., Jelenković, L., Budin, L.: Genetic programming heuristics for mul-
tiple machine scheduling. In: European Conference on Genetic Programming. pp.
321–330. Springer (2007)

3. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of operations research 1(2), 117–129 (1976)

4. Vazquez-Rodriguez, J.A., Ochoa, G.: On the automatic discovery of variants of the
neh procedure for flow shop scheduling using genetic programming. Journal of the
Operational Research Society 62(2), 381–396 (2011)

5. Mascia, F., López-Ibánez, M., Dubois-Lacoste, J., Stützle, T.: From grammars
to parameters: Automatic iterated greedy design for the permutation flow-shop
problem with weighted tardiness. In: International Conference on Learning and
Intelligent Optimization. pp. 321–334. Springer (2013)

6. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: A review. IEEE Transactions on Evolutionary Compu-
tation 20(1), 110–124 (2016)

7. Mobley, R.K.: An introduction to predictive maintenance. Elsevier (2002)
8. Zheng, S., Ristovski, K., Farahat, A., Gupta, C.: Long short-term memory net-

work for remaining useful life estimation. In: Prognostics and Health Management
(ICPHM), 2017 IEEE International Conference on. pp. 88–95. IEEE (2017)

9. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the 13th annual conference on Genetic and evolutionary computa-
tion. ACM (2011)

10. Vonolfen, S., Beham, A., Kommenda, M., Affenzeller, M.: Structural synthesis of
dispatching rules for dynamic dial-a-ride problems. In: International Conference
on Computer Aided Systems Theory. pp. 276–283. Springer (2013)

11. Frankola, T., Golub, M., Jakobovic, D.: Evolutionary algorithms for the resource
constrained scheduling problem. In: Information Technology Interfaces, 2008. ITI
2008. 30th International Conference on. pp. 715–722. IEEE (2008)

16 S. Zheng et al.

12. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks. pp. 50–56. ACM (2016)

13. Chen, X., Hao, X., Lin, H.W., Murata, T.: Rule driven multi objective dynamic
scheduling by data envelopment analysis and reinforcement learning. In: Automa-
tion and Logistics (ICAL), 2010 IEEE International Conference on. pp. 396–401.
IEEE (2010)

14. Zheng, S., Ding, C.: Kernel alignment inspired linear discriminant analysis. In:
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. pp. 401–416. Springer Berlin Heidelberg (2014)

15. Zheng, S., Nie, F., Ding, C., Huang, H.: A harmonic mean linear discriminant anal-
ysis for robust image classification. In: 2016 IEEE 28th International Conference
on Tools with Artificial Intelligence (ICTAI). pp. 402–409. IEEE (2016)

16. Zheng, S., Ding, C., Nie, F., Huang, H.: Harmonic mean linear discrimi-
nant analysis. IEEE Transactions on Knowledge and Data Engineering (2018).
https://doi.org/10.1109/TKDE.2018.2861858

17. Zheng, S., Ding, C.: Sparse classification using group matching pursuit. Neurocom-
puting 338, 83–91 (2019). https://doi.org/10.1016/j.neucom.2019.02.001

18. Zheng, S., Ding, C.: Minimal support vector machine. arXiv preprint
arXiv:1804.02370 (2018)

19. Zheng, S., Ding, C., Nie, F.: Regularized singular value decomposition and appli-
cation to recommender system. arXiv preprint arXiv:1804.05090 (2018)

20. Wang, C., Mahadevan, S.: Manifold alignment without correspondence. In: IJCAI.
vol. 2, p. 3 (2009)

21. Weckman, G.R., Ganduri, C.V., Koonce, D.A.: A neural network job-shop sched-
uler. Journal of Intelligent Manufacturing 19(2), 191–201 (2008)

22. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear priority dispatch
rules for job-shop scheduling. In: International conference on learning and intelli-
gent optimization. pp. 263–277. Springer (2011)

23. Li, X., Olafsson, S.: Discovering dispatching rules using data mining. Journal of
Scheduling 8(6), 515–527 (2005)

24. Shiue, Y.R.: Data-mining-based dynamic dispatching rule selection mechanism for
shop floor control systems using a support vector machine approach. International
Journal of Production Research 47(13), 3669–3690 (2009)

25. Zhang, W., Dietterich, T.G.: A reinforcement learning approach to job-shop
scheduling. In: IJCAI. vol. 95, pp. 1114–1120. Citeseer (1995)

26. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. ACM SIGCOMM Computer Communication Re-
view 44(4), 455–466 (2015)

27. Zheng, S., Shae, Z.Y., Zhang, X., Jamjoom, H., Fong, L.: Analysis and model-
ing of social influence in high performance computing workloads. In: European
Conference on Parallel Processing. pp. 193–204. Springer Berlin Heidelberg (2011)

28. Sutton, R.S., Barto, A.G., et al.: Reinforcement learning: An introduction. MIT
press (1998)

29. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8(3-4), 229–256 (1992)

30. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in neural
information processing systems. pp. 1057–1063 (2000)

Manufacturing Dispatching using Reinforcement and Transfer Learning 17

31. Zheng, S., Vishnu, A., Ding, C.: Accelerating deep learning with shrinkage and
recall. In: 2016 IEEE 22nd International Conference on Parallel and Distributed
Systems (ICPADS). pp. 963–970. IEEE (2016)

32. Ammar, H.B., Eaton, E., Ruvolo, P., Taylor, M.E.: Unsupervised cross-domain
transfer in policy gradient reinforcement learning via manifold alignment. In: Proc.
of AAAI (2015)

33. Joshi, G., Chowdhary, G.: Cross-domain transfer in reinforcement learning using
target apprentice. arXiv preprint arXiv:1801.06920 (2018)

34. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Transactions on
knowledge and data engineering 22(10), 1345–1359 (2010)

35. Zheng, S., Cai, X., Ding, C., Nie, F., Huang, H.: A closed form solution to multi-
view low-rank regression. In: AAAI. pp. 1973–1979 (2015)

36. Zheng, S.: Machine Learning: Several Advances in Linear Discriminant Analysis,
Multi-View Regression and Support Vector Machine. Ph.D. thesis, The University
of Texas at Arlington (2017)

