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Abstract. Using touch devices to navigate in virtual 3D environments
such as computer assisted design (CAD) models or geographical informa-
tion systems (GIS) is inherently difficult for humans, as the 3D operations
have to be performed by the user on a 2D touch surface. This ill-posed
problem is classically solved with a fixed and handcrafted interaction
protocol, which must be learned by the user. We propose to automati-
cally learn a new interaction protocol allowing to map a 2D user input
to 3D actions in virtual environments using reinforcement learning (RL).
A fundamental problem of RL methods is the vast amount of interac-
tions often required, which are difficult to come by when humans are
involved. To overcome this limitation, we make use of two collaborative
agents. The first agent models the human by learning to perform the
2D finger trajectories. The second agent acts as the interaction protocol,
interpreting and translating to 3D operations the 2D finger trajectories
from the first agent. We restrict the learned 2D trajectories to be similar
to a training set of collected human gestures by first performing state
representation learning, prior to reinforcement learning. This state rep-
resentation learning is addressed by projecting the gestures into a latent
space learned by a variational auto encoder (VAE).

Keywords: Multi-Agent, Deep Reinforcement Learning, H-C Interfaces

1 Introduction

The goal in user interface (UI) design is to propose a communication protocol
between human users and a given machine that is intuitive, quick, precise, and
which minimizes the amount of training required for new users not yet familiar
with it. Designing such an interface is not trivial, as some of these desired prop-
erties are contradictory. Furthermore, some of these objectives are difficult to
quantify, such as intuitivity of the interface or, more generally, user satisfaction.

Our work focuses on a specific component of touch user interfaces, which
we call the interaction protocol. This protocol defines the rules that allow the
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computer to interpret 2D user gestures performed on touch tables into actions in
the virtual environment. In the literature, this interaction protocol refers to the
software side of an interaction technique [14][21]. In this paper, we address the
problem of automatically learning a suitable interaction protocol for graphical
user interfaces on touch surfaces, which requires users to manipulate 3D objects,
for instance in computer assisted design (CAD) software or in geographic infor-
mation systems (GIS). In these situations, the problem is particularly ill-posed,
as the trajectories produced by a user on the flat touch screen are restricted to a
2D surface, whereas the applications require the user to perform manipulations
in a virtual 3D environment. To give a concrete example, inspecting a virtual
mechanical product or navigating in a virtual building or city requires the possi-
bility to change the camera viewpoint through rotations, translations, zooming,
i.e. to manipulate 6 degrees of freedom (3 for the camera position and 3 for the
camera direction) through trajectories of eventually multiple fingers in the 2D
plane of the touch table. There is no universally accepted canonical solution for
this kind of problem.

Advanced methods approach this mapping from gestures to actions in a 3D
environment using several parameters: not only the 2D gesture themselves, but
also the position of the camera (view of the user), the state of the 3D environ-
ment, etc. [5, 7]. Theoretically, these methods offer more complex manipulation
strategies and higher efficiency. However, the challenge here lies in the combina-
tion of precision and efficiency on one hand, and ease of use and learnability (by
humans) on the other hand.

In this work, we propose to learn these interaction protocols automatically
from interactions with humans. The mapping from 2D gestures to actions in the
3D environment is performed by a trainable agent whose policy is learned using
reinforcement learning (RL). Such an agent observes user gestures, translates
them into actions in the 3D environment and receives a reward, which should
be related to user satisfaction in the optimal case. The motivations behind this
choice are two-fold:

– to automatically learn complex interactions protocols instead of handcrafting
them;

– to create adaptive user interfaces, where not only the human users (classi-
cally) adapts to the interface, but the computer also adapts to the way the
interaction protocol is imagined by the user through online learning during
usage.

The main challenge lies in the requirement of massive amounts of interactions,
necessary for current RL algorithms, but which are difficult or impossible to
come by when humans are involved. Requesting users to provide gestures and
feedback on satisfaction at each iteration would be overly complicated and not
realistic for any complex application.

In this work, we propose to circumvent this problem by firstly pre-training the
RL agent from interaction with a learned user model which is jointly learned with
the target agent. The interactions of the user model are statistically constrained
to natural interactions collected in a static dataset. Secondly, creating loss /
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reward signals during this pre-training phase from success measures in standard
interaction tasks, e.g. “go to place X ”.

The paper is organized as follows: section 2 discusses related work in re-
inforcement learning and HCI. Section 3 presents the exact formulation of the
HCI problem as a reinforcement learning problem. Section 4 introduces the main
contribution of this work: the formulation as a cooperative multi-agent problem,
where the user model is jointly learned with the interaction protocol, restricting
simulated interactions to natural ones. Two different experimental sections re-
port evaluations of the approach on two scenarii of increasing complexity. Section
5 describes experiments on a simple 2D environment where users manipulate a
2D object on a 2D surface in a similar fashion to the widely known “Pinch-To-
Zoom” interface developed for smartphones and tablets. The common solution
of this type of environment being known, the objective here is to automati-
cally learn this interaction protocol from interactions instead of handcrafting
it. Finally, section 6 describes experiments on the targeted application, namely
learning a 2D to 3D interface protocol involving navigation in 3D environments.
This application features additional complexities, such as the non-unicity of the
solution (discussed in Sec.4) and the impossibility to analytically define an op-
timal user.

2 Related Work

Our work stands between two active fields of computer science: human-computer
interface (HCI) and machine learning (ML). We will shortly describe relevant
work in both areas to paint the background.
Adaptive user interface — The goal of Adaptive User Interfaces (AUI) is to
adapt its visualization and its interactions to fit individual users’ intent better.
Machine learning, in this case, is traditionally used for user intent modelization.
For an overview of state-of-the-art AUI with adaptive visualization, see [1]. To
our knowledge, there is no prior work on learning the interaction protocol of an
interface with continous action space.
Reinforcement learning and UI design — Reinforcement learning (RL) is
a machine learning framework in which a software agent learns to solve an en-
vironment by taking actions that maximizes some cumulative reward. RL has
seen some specific uses for AUI design, more precisely for user profiling and rep-
resentation tasks. In [23], an agent learns to detect user preferences implicitly
from observing user behavior instead of direct feedback. In [11], an agent uses
user feedback to display personalized web pages.
Machine learning and 3D interaction design — 3D user interface (UI)
design has been studied for about 20 years [6]. In the 3D UI context, a good
overview of current state-of-the-art 3D UI methods is given in [21]. While ML
has been used in user interface and user experience design for about two decades
[16][25], using machine learning for interaction design is to the best of our knowl-
edge an application yet to be explored. In the UI context, ML is classically used
to improve the accuracy of an existing interaction protocol: in [24], a gaussian
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process regression is used to improve touch accuracy. In [18][10][8], supervised
deep learning is used to improve the recognition rate of some multi-touch gesture
classes.
Reinforcement learning and generative models — Combining the latent
representations of generative models with policy learning was explored in some
recent work. In [13], the encoding part of a modified VAE is used to build dis-
entangled representations for a RL policy to use in domain adaptation tasks. In
[20], a VAE together with an agent are trained for different purposes: synthesize
training data from real observations of the policy, embed the observations to
provide latent representations to the policy and measure reward signals in the
latent space.
Learning from demonstration — In our paper, we are trying to learn a user
model from a small part of all the possible interactions a user can perform. In
[22], a model-based agent is built from examples given by a demonstrator that
can either be a generative model, open loop excitation or an expert.

3 Learning an interaction protocol as a reinforcement
problem

Our goal is to learn an interaction protocol coupling user trajectories with actions
in a 3D application like CAD or GIS while maximizing the user’s satisfaction.
We cast this as an RL problem, where the agent gets observations in the form of
finger trajectories and outputs actions, which correspond to viewpoint changes
in a 3D environment. Because user intentions and gestures can have long term
dependencies and depend on multiple latent factors, this problem could be mod-
eled as a partially observable Markov decision process (POMDP). Assessing the
complexity of such a modelization for a novel application, we prefer in this paper
to consider the problem as a fully observed Markov decision process (MDP) by
stacking two-time instants. This implies considering that the information given
at two following time instants is enough to predict user intent. The problem is
then treated as an MDP with continuous observation and action spaces. The
agent A observes the state in the form of finger trajectories s and receives a
reward r after performing an action a in the application. An agent A learns a
policy π such as a = π(s) to maximize its expected return, i.e., the expectation
of cumulated reward. Fig. 1 illustrates this situation.

In the RL nomenclature, the agent interacts with an environment, which,
in our case, corresponds to, both, the human user and the application, e.g. a
CAD or GIS software (see Fig. 1). The agent observes a state, i.e. the user’s
finger trajectories, and then performs actions that change the viewpoint in the
3D software and which lead to a new state (new user gestures). The agent also
receives feedback in the form of a reward. It is important to note here that
user satisfaction is difficult to measure directly if we do not want the resort to
solutions which estimate emotions from facial expressions. In the next sections,
we will propose proxy metrics which approximate satisfaction.
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Fig. 1. Learning user interface protocols from interactions with users as an MDP/RL
problem.

4 Jointly learning the interface protocol and human
behavior

Deep networks require large-scale training datasets, and Deep RL is not an ex-
ception. More so, RL requires dynamic data in the form of interactions, typically
millions or billions when observations are of high dimensions and/or when the
regularities are complex. In robotics, where interactions with physical robots are
slow (not faster than physical time) and expensive, this leads to the tendency
of training from simulations, for instance [2][3] for robot navigation and [26] for
grasping, and to the sim-to-real transfer problems [26].

Similar to robotics, learning from human interactions is limited. It is re-
stricted to physical real-time, and the effort required from humans during train-
ing is to be taken into account. More so, human time is expensive. For these
reasons, we address this by simulating the environment, which in our case also
involves simulating the human user. However, while simulating robots through
handcrafted solutions is feasible, at least approximately, human behavior is in-
herently difficult to model. For this reason, we propose a formulation where hu-
man behavior is learned jointly with the interface task itself. The next two sub
sections describe the two main challenges for this task: (i) restricting the learned
user behavior to realistic human gestures (sub section 4.1), and (ii) solving the
joint learning problem (sub section 4.2).

4.1 Learning the manifold of natural human gestures

Let x∈X be an observation in the form of natural two-finger trajectories per-
formed by a human user. We define an observation as a N -length sequence of
4-tuples, each 4-tuple consists of a pair of coordinates (x, y), one for each of the
two fingers. X=R4N is the space of observations of length N . The gesture space
X thus covers all possible pairs of 2D trajectories, including trajectories which
are anatomically impossible to perform by human fingers. Our objective is to
learn a subspace which corresponds to gestures naturally performed by humans.
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To this end, we suppose the existence of a training dataset of natural gestures
X = {xi}, which have been collected from user interactions. This training data
can be collected without any manual annotation as simple interaction traces.

We want to build a model capable of producing any natural gesture x from
a latent representation z. Sampling values from z should provide us samples of
the manifold of natural human gestures. This involves learning a distribution
p(x|z) and to be able to evaluate it from a given z. Restricting our simulated
user to produce samples of the latent representation z should therefore restrict
it to produce natural gestures.

Several approaches exist for learning generative models of probability distri-
butions from training data, among which are Generative Adversarial Networks
(GANs) [12] and Variational Auto-Encoders (VAEs) [15]. Our definition of p(x|z)
can be related to the generative part of a GAN or the decoder part of a VAE.
In this work, we chose VAEs for two reasons: they are simpler to train and less
sensitive to hyperparameters; and the latent space is smoother, due to its soft
constraint to be close to a multivariate Gaussian.

The VAE is trained on the dataset X, approximating the distribution pθ(x)
by measuring the reconstruction error on a sample xi coded by an encoder E
into a code zi, then reconstructed into x̂i using a decoder D. To describe the
problem from a probabilistic point of view, the probability pθ(x) of a sample x
can be decomposed into a prior and a likelihood as:

pθ(x) =

∫
pθ(x|z)pθ(z)dz (1)

where the prior on z is defined as a standard Gaussian distribution pθ(z) =
N (0, I). In our case (continuous values), we can assume that the likelihood is
Gaussian distributed:

pθ(x|z) = N (x|D(z, φd), σ
2I) (2)

where D(z, φd) is the decoder of the VAE. The integral is difficult to evaluate,
but can be approximated by a point estimate z=qφ(x) from the variational
distribution q:

pθ(x) ≈ N (x|D(qφ(x), φd), σ
2I) (3)

qφ(z|x) can be seen as an encoder, noted E(x, φe). In this case, we need to ensure
that qφ(z|x) is a good estimate of the true posterior pθ(z|x). This is done using
the Kullback-Leibler divergence, noted DKL. Considering the approximation er-
ror for only a sample xi, the KL divergence becomes DKL(E(xi, φe)||p(z)). As
stated earlier, pθ(z) = N (0, I). If we use the L2-norm to measure the recon-
struction error, the total error can be written as a variation of the evidence
lower bound (ELBO):

ELBOi = ||xi −D(E(xi, φe), φd)||2 − β DKL(E(xi, φe)||N (0, I)) (4)

where β is a parameter allowing us to adjust the tradeoff between the recon-
struction precision and the latent space regularity [19]. We can then update φe
and φd by minimizing this error using back-propagation.



Learning 3D Navigation Protocols with Cooperative Multi-Agent RL 7

Fig. 2. Cooperative multi-agent RL problem for jointly learning user interface protocol
and user behavior. Generative models are blue and RL policies are green (best viewed
in color).

4.2 Cooperative Multi-Agent RL

We formulate the task of jointly learning the user interface protocol and human
behavior as a cooperative multi-agent reinforcement (MARL) problem, as shown
in Fig. 2. Two agents are learned jointly, each with its own policy:

– agent Ai corresponds to the user interface. Learning its policy is the original
goal of this work, as this agent is responsible for translating 2D finger gestures
into actions in the 3D environment (CAD or GIS software).

– agent Au corresponds to the simulated user, with which agent Ai interacts.
The only purpose of Au is to replace human users during the costly pre-
training phase. In contrast to Ai, Au is discarded after training.

These two agents are trained to maximize the same objective function, sharing
the same reward (detailed in section 4.3), which makes this problem a coop-
erative multi-agent problem. Only Ai directly takes action in the virtual 3D
environment, whereas Au acts indirectly by producing the input of Ai.

Learning both agents by maximizing the joint reward without additional
constraints could naturally lead to degenerate solutions, which are efficient (allow
to navigate quickly), but where the gestures exchanged between the two agents
are artificial and not easily and naturally doable by humans. For this reason, we
restrict the exchange between Ai and Au to a representation z learned by the
VAE described in section 4.1. More precisely, after training the VAE, we discard
its encoder. The agent Au learns a policy on an action space which corresponds to
the latent representation z. Each action z is then decoded to a natural gesture
x through the decoder of the learned VAE, as illustrated in Fig. 2. In other
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words, the policy of the user agent learns to produce gestures by navigating the
latent space of the VAE. For readability, for the rest of the paper, we will refer
to the interaction protocol agent as the interface agent Ai, and to the RL agent
sampling in the VAE latent space as the user agent Au. The combination of the
user agent and the decoder will be called user model U .

The method can be more formally described as follows. The task is a sequen-
tial cooperative setup where Au produces the state of Ai and Ai does not get
any observation of the virtual environment. In what follows, we denote st. as the
state of an RL agent at time t, at. as the action at time t and rt. as the resulting
reward from action at. . π. will denote an agent policy. All symbols are indexed
by subscripts u or i, which stand, respectively, for the agent Au and Ai. Let θt

be the state of the software environment at time t, for instance the viewpoint
in a building, or the 6D pose of a mechanical object in a CAD problem. Then,
a given time step t in our sequential cooperative MARL setup will unroll as
follows:

stu = θt

atu = D(πu(stu))

sti = atu (5)

ati = πi(s
t
i) = ∆θt

st+1
u = θt+1

rtu = rti = r(ati, s
t+1
u )

where ∆θt is a variation of the parametrization of the object, and rtu=rti is the
joint reward at time t. We can note that the constraint on Au actions defined
by D is mandatory for our setup to converge to a cooperative setup. Indeed,
supposing that we directly have sti = πu(stu)), the policy of one of the agents will
degenerate to an identity, effectively lowering the complexity of the problem by
getting rid of the intermediate representation between the two agents. One agent
will end up observing and taking actions directly in the virtual environment,
breaking the paradigm of this setup.

4.3 Defining the reward function

The goal of this work is to optimize user satisfaction during interactions, which
is not easily measurable. We can attempt to empirically break it down to a set
of less subjective parts: precision of the interactions, expressiveness, intuitivity
and ease of use. The latter two are difficult to measure directly but can be added
as learned soft constraints to the agent. In this work, we make the assumption
that the latent representation learned by the VAE from interaction logs encodes
intuitivity and ease of use, leveraged by restricting the user agent Au to an action
space defined as the latent representation of the VAE.

The former two (precision and expressiveness) are performance metrics re-
lated to the environment the agents are trying to solve. If we restrict ourselves
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to training from situations where the objective of the HCI experiment is known,
these measures can be optimized directly by defining an appropriate reward func-
tion. As examples we could imagine asking users questions like “Find Waldo in
this building by navigating there” or “view the carburator of this V6 engine from
above allowing to see inside it”. The downside to this approach is restricting
training to situations with known outcomes and objectives. This still allows
learning interfaces in a co-adaptive fashion, in two consecutive stages: a first off-
line training stage on a set of “training users”, followed by an enrollment training
phase, where each user is asked to solve custom scenarii to adapt the system to
its own interface behavior. It does not, however, allow continuous adaptation
during usage with unknown objectives.

We will detail our chosen reward functions in the experimental section. It
suffices to say at this point, that they measure a distance to the goal in the
given user defined task. However, it is important to remember that our true goal
is not for the agents to maximize their rewards, which only partially relate to
user satisfaction. Convergence of cumulated reward is a necessary condition for
a good solution, but not sufficient. Only humans can assess the true quality of
these interaction protocols.

4.4 Stabilizing learning with self-supervision

In the standard formulation as described above, during training, the interface
agent Ai learns to interpret actions produced by the user agent Au, while Au
does not get any (unfiltered) information from the interface and as such cannot
infer how the interface will interpret a gesture it produces. Furthermore, since
the interface policy πi evolves during training, the target for the user agent Au
is unstable, which makes training difficult.

We stabilize training by forcing Au to approximate decisions taken by the
interface Ai in the form of self-supervision. We add a second predictor head to
Au, which predicts the output of Ai. This predictor shares common layers with
the classical predictor of the policy πu, which ensures that the learned feature
representation benefits both predictors. The new predictor is supervised with
the real output of the interface agent Ai using the L2 loss Le = ||ai− âi||2. âi is
the interface action predicted by Au, and ai is the interface action predicted by
Ai. In practice, this loss only affects the user actor πu, the critic taking no part
in this estimation. This is an external training signal added to the RL signal
coming from the critic estimation of the state-action value function Q. As a
note, adding a coefficient to the new loss to control its impact did not yield any
meaningful improvements.

5 Experiments 1: a simple problem — solving
“Pinch-to-Zoom”

As a first proof of concept, we will attempt to solve a well-known continuous
HCI, for which a handcrafted solution does exist, the goal being to verify whether
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learning can discover the existing solution. Our choice here is the well known
“Pinch-to-Zoom” interface widely used for smartphones and tablets. The name
is a misnomer, since the interface not only allows to zoom, but also to translate
and rotate the content of surface through 2D gestures made by two fingers. We
suppose that a user performs gestures with exactly two fingers on a touch screen
and we investigate the motion between two different time instants. We denote
by l = [lx ly]T the screen coordinates of a single finger at the first instant and
by l′ = [l′x l

′
y]T the coordinates at the second instant. If we need to explicitly

identify a finger, we will index finger i with a superscript as in li or l′i. The
coordinates are normalized between [0 0] (top-left) and [1 1] (bottom-right).

The known solution — We will first derive the analytical form of the known
solution before describing the experiments learning it. The gestures performed
by the user are a combination of translation, rotation and scaling. We suppose
that the 2D finger motion on the screen induces the same 2D motion of the
manipulated surface, which can be seen as a special case of affine transformation
where the shear component is zero. It transforms coordinates l into l′ as l′ =
Al+ t where t = [tx ty]T is the translation component and the rotation+scaling
matrix can be calculated from the rotation angle α and the scaling factor σ as
follows:

A =

[
cosα − sinα
sinα cosα

] [
σ 0
0 σ

]
=

[
σ cosα −σ sinα
σ sinα σ cosα

]
(6)

The 4 parameters of the motion are thus α, σ, tx, ty, which we will combine
into a parameter vector θ = [σ cosα σ sinα tx ty]T . If we have motion of
two different fingers (l1, l′1) and (l2, l′2), then the following linear relationship
between the coordinates and the parameter vector θ holds: d = Dθ, where d
is a vector containing the target coordinates and D is a matrix containing the
source coordinates in a suitable form:

l′1x
l′1y
l′2x
l′2y

 =


l1x −l1y 1 0
l1y l1x 0 1
l2x −l2y 1 0
l2y l2x 0 1



σ cosα
σ sinα
tx
ty

 (7)

Because D is always invertible (except for the degenerated case where both

fingers are at the origin), this linear equation can be solved easily as θ̂ = D−1d.

Learning a solution — We now let an RL agent learn this protocol. Let
the state of the agent be a two-finger motion si = [l1x l1y l2x l2y l′1x l′1y l′2x l′2y ]
performed by the user, where superscripts index fingers and subscripts indicate
x or y coordinates. Agent actions ai = [σ cosα σ sinα tx ty]T are continuous
vectors of size 4, which correspond to the parameters of an affine motion trans-
formation without shear component. Note that while this affine transformation
has the same functional form as the one expressed in the analytical solution
above, we here describe output motion only (motion the manipulated object
will endure) and not input finger motion. In other words, in this RL scenario,
we do NOT suppose that object motion equals finger motion.
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Fig. 3. An example rollout of the interface policy learned for the “Pinch-To-Zoom”
problem. The rectangle need to be superimposed, finger trajectories are indicated by
arrows.

The environment is a simple scenario, where a user is required to move a
virtual surface containing an object (a red rectangle). The goal is to bring this
object to a fixed position by superimposing it on an object which does not move
with the manipulated surface, i.e. a black rectangle “painted” on the glass of the
device. The reward function in this task is the sum of L1- and L2-distances the
object vertices and the target vertices:

r = −
∑
i

( ||oi − ti||1 + ||oi − ti||2 )− 0.2 (8)

where oi and ti are the coordinates of i− th vertice of the respective rectangle.
Let us recall that the interface agent does not have access to these positions,
else it would learn to simply ignore user gestures. The constant −0.2 reward is
set to continuously encourage fast solutions. A positive reward of +25 is given if
the agent successfully finishes an episode. These arbitrary values are chosen so
that the expectation of the sum of rewards per episode is close to 0 for an agent
close to the optimal solution.

Handcrafted simulation of the user — For this toy problem, the cooper-
ative multi-agent formulation proposed in section 4 is not necessary. We instead
handcraft a solution simulating a user who is aware of the “Pinch-To-Zoom”
protocol, i.e. of the known analytical solution. We would like to stress that the
agent is of course not aware of the solution. The interface solution expressed in
7 allows us to compute simulated user trajectories: this can simply be done by
considering two diagonally opposed object vertices v1 and v2 and their target
position v′1 and v′2. For a sampling time, we can consider that the user will move
the object toward the target while keeping the vertices vi on the segments [vi, v

′
i]

(which is the optimal way to solve the task). It means we can find intermediate
positions of vi on these segments using the linear combination:

vinteri = (1− µ)vi + µv′i , µ = max(1,
0.5

||v′i − vi||2
) (9)

µ is the user’s gesture velocity. A small µ will mean small relative increments
toward the target. This definition of µ goes in the sense that a human user
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Fig. 4. The 3D navigation user interface. Left: the user/camera view; Right: static
bird’s eye view. Current user gestures are displayed on top left. The goal is to su-
perimpose the green arrow attached to the camera with the red non moving target
arrow.

will tend to do faster gestures while far from the target and slower, more precise
gestures while close to it. Now that we have two points of the wanted intermediate
object position, we can solve the equation 7 in order to get the transformation of
every point of the object to the intermediate position. At last, we can choose two
random points p1 and p2 on the object, transform them using the computed θ̂
parameters and build the two trajectories [p1, p

inter
1 ] and [p2, p

inter
2 ]. The state

bsi of the agent will be the concatenation of these two trajectories, resulting in
a vector of size 8.
Results — We compare our trained agent to an optimal solution. This optimal
solution is easily modelled as we defined both the analytic solution of a user and
of the interface. On an average of 100 episodes, the optimal solution finishes an
episode in 40 steps and obtains a reward of +0.5 per episode.

After a training of about 300k steps, the interface agent obtains very similar
results: on an average of 100 episodes, it finishes an episode in 41 steps and
obtains a reward of +0.4. It is visually impossible to separate the optimal solution
from the learned agent. An illustration of a rollout in the environment is given
in Fig. 3.

6 Experiments 2: 3D navigation from 2D gestures

We now discuss the experiments on the real 3D navigation user interface, for
which no optimal solution is known to exist. As described in the introduction, we
want to learn an agent to map 2D finger gestures to motion in a 3D environment,
an ill-posed problem. To this end, we extended the 2D toy problem to 3D,
maintaining the user’s goal of moving a (now 3D) content to superimpose an
object over a non-moving object, as shown in Fig. 4. As there is no simple
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handcrafted way to simulate a human user, we use the multi-agent RL setup
described in Sec. 4. The 3D affine transformation to be learned by the interface
agent can be expressed using homogeneous coordinates in 4 dimensions as a 4×4
matrix φ:

φ =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 , R =

r11 r12 r13r21 r22 r23
r31 r32 r33

 , t =

t1t2
t3

 (10)

As we do not consider scaling (redundant with forward motion), the matrix is
totally parametrized by 6 coefficients: [τx, τy, τz, ρx, ρy, ρz], where τ. and ρ. are,
respectively, translation coefficients and Euler angles on the 3 axis. We limit the
Euler angles to ]−π, π] to ensure their unicity given an axis. Such a vector can
define transformations as well as object positions when using a fixed referential in
the environment. With this formalization, The user agent Au gets as observations
the camera position vector and learns a policy over actions which are trajectory
vectors [l1x l

1
y l
′1
x l′1y l2x l

2
y l
′2
x l′2y ]. The interface agent Ai observes the output of

Au and learns a policy over residual transformation vectors of the camera, i.e.
st+1
u = stu + ai. We define the reward equivalent to the 2D problem in section 5,

given in equation (8), the difference being that each object has 2 vertices instead
of 3, and that vertices are in 3D space.

VAE training and architectures — We train the latent 2D gesture rep-
resentation with a VAE on a dataset of multi-touch interaction gestures, in par-
ticular the Itekube-7 Dataset [10]. We used all the two-finger gestures from the
translation, pinch and rotation classes. Each gesture of the dataset was sampled
using the dynamic sampling described in [10] to fix the length of the gestures to
10 timesteps. The VAE was trained for 50 epochs with β=0.07, a batch size of
128, and a learning rate 0.002. The latent code is of size 8. The encoder and the
decoder are both recurrent. Encoder: a one-layer GRU [9] with a hidden state of
size 256 and ReLU activation. It is recurrent in time and reads inputs of size 4
(two 2D finger positions). Second, two FC layer predict, respectively, the mean
and the stddev of the latent code from the last hidden state. The decoder is a
two-layer GRU: The first layer has a hidden state of size 128 with ReLU activa-
tion, the second layer has a hidden state of size 4 (to reconstruct the position of
both fingers at each timestep), no activation. The entire code is fed to it at every
timestep, i.e. the number of unrollings of the GRU will determine the number
of timesteps of the reconstruction. At training time, this number is set to the
number of timesteps of the original data (10), but at inference time, this number
can be arbitrarily, which allows to produce shorter or longer trajectories from
the same latent code.

Fig. 5 visualizes the latent representation, and reconstruction examples are
given in Fig. 6. The representations from the latent space are satisfying as we can
observe some high level features and disentanglement: for instance, dimension 0
expresses pinch, while dimension 2 expresses clockwise rotation.

Multi-agent RL training — We chose the model-free off-policy actor-
critic method Deep Deterministic Policy Gradient (DDPG) [17]. In our setup,



14 Q. Debard et al.

Fig. 5. Navigating the latent space learned by the VAE. Middle column: zero code z.
Lines correspond to different modified latent variables (dim=8). Columns correspond
to different values.

an epoch cycle consists of two phases: (i) a rollout phase on an episode, where all
quadruplets [state, action, reward, new state] are stored in the replay memory of
the agents; (ii) a training phase where quadruplets are randomly sampled from
the memory, batched (in sizes of 4096) and used to train the actor and the critic
of the agents. We define an epoch as 100 epoch cycles. The training is arbitrarily
stopped when no improvement on the metrics is observed. A training session
takes about 2 days on a Titan-X Pascal GPU.

Join training of both, Au and Ai, was not successfull. We suspect the added
variance and the moving value of state-action pairs for both agents as a source
of the problem. Similar to [4], we chose to train them in an alternating manner:
during an epoch, only one agent will be trained, while the weights of the other
agents are kept fixed.

Stacking timesteps — We consider two ways for the two agents to commu-
nicate. The simplest one is a two-instant communication: the decoder produces a
gesture of only two time instants, and the interface produces the corresponding
action. It is simple, but leads to non-smooth user gestures difficult to appreciate
from a human viewpoint is hard. We also consider stacking time instants: Au
produces a complete gesture of 10 timesteps, and Ai must produce the corre-
sponding sequence of actions (9 if there are 10 timesteps). In this case, a step
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Fig. 6. Reconstruction examples made by the VAE. The first line displays reconstructed
gestures while the second displays the corresponding original gestures.

Mean reward/ep. Mean #steps/ep. Nb. training steps

No Stacking 3.6±1.0 53±1 17.6M±0.4M
+ Stacking 0.5±1.5 56±4 24.6M±6.3M

Theoretical Opt. 5.0 40 N/A

Table 1. Results on the 3D environment. The last line gives theoretical optimal results
based on the interface action amplitude, without considering a naturalness constraint.
The Mean reward/ep. is the mean cumulated reward per episode obtained in the best
performing epoch. The Mean nb. steps/ep. is the mean number of timesteps needed to
successfully finish an episode in the best performing epoch. The Nb. training steps is
the number of environment steps that was needed to attain the best performing epoch.
Stacking improves usability but NOT efficiency.

from the RL perspective will contain 10 update steps of the environment. This
decouples the update speed of the agents from the sampling speed of the finger
gestures, referred to as “Stacking” in Table 1.

Architectures — In what follows, FCX refers to an FC layer with X hidden
units, with layer normalization and ReLU activation. The actor of Au is an MLP
with two hidden FC100 layers. The output layer is FC and activated with tanh,
predicting a vector of size 8 (the latent code z expanded by the VAE decoder D).
Another FC100 layer is plugged to the first hidden layer, with an output layer
producing the estimate âi. The critic of Au is an MLP with two hidden FC100
layers. The policy action is concatenated to the first hidden layer. A linear FC
layer predicts the value Q.

The actor of Ai is an MLP with two hidden FC64, and an output layer with
tanh activation. The output size is either 6 for the standard solution or 6x9=54
for the stacked solution. The critic of Ai has the same architecture as the critic
of Au, except hidden layers are FC64.

Results — Quantitative results are given in Table 1. Each setup was re-
produced with 3 different random seeds. We consider that a run has converged
whenever all 100 episodes of an epoch are successful. Once it has converged, it
can still improve by solving episodes faster. This is measured as the mean num-
ber of steps needed to solve an episode. The mean reward per episode is also
correlated to the quality of the interaction protocol, but should be interpreted
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Fig. 7. An example of 4 back to back frames from the MARL setup learning the 3D
navigation problem with instant stacking. We want to emphasize on the continuous
aspect of user gestures (top-left) and the semantic. We can see that the user agent is
currently performing a rotation-like gesture.

differently. Indeed, a run with a lower mean step per episode but a higher mean
reward per episode is most likely less satisfactory than a run with higher steps
but lower reward. This is because the first type of solutions tend to be less con-
tinuous with harsher action changes, while the second is technically slower but
goes in the direction of the objective more smoothly.

“Stacking” and usability — the interaction protocols must also be observed
visually in order to assess their global quality: good interfaces should display
distinctive characteristics, such as a similar curvature between 2d trajectories
and 3D movements of the camera, or well defined classes for similar actions.
While stacking does NOT improve efficiency (as shown in table 1), it makes
the protocol usable. The continuous aspect of gestures using instant stacking is
illustrated in 7, videos are provided in the supplementary material.

7 Conclusion

We presented a novel method for automatically learning interaction protocols
from natural interactions. While our application for this paper is limited to
touch interfaces, this setup can virtually be applied to any technology and any
software, as long as a large enough interaction dataset can be collected. We want
this work to be a step toward a better co-adaptive relation between the human
and a computer, allowing for individually suited interfaces and higher levels of
interaction. Future work will model the interaction protocol as a POMDP, which
should allow to better represent long term dependencies and tackle more complex
regularities. The main remaining problem is to fine-tune the learned models on
real human users, which requires large-scale efforts with a large amount of human
partners.
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