
Online Linear Models for Edge Computing

Hadar Sivan1(�), Moshe Gabel2, and Assaf Schuster1

1 Technion - Israel Institute of Technology, Haifa 3200, Israel
{hadarsivan,assaf}@cs.technion.ac.il
2 University of Toronto, Toronto, Canada

mgabel@cs.toronto.edu

Abstract. Maintaining an accurate trained model on an infinite data
stream is challenging due to concept drifts that render a learned model
inaccurate. Updating the model periodically can be expensive, and so
traditional approaches for computationally limited devices involve a vari-
ation of online or incremental learning, which tend to be less robust.
The advent of heterogeneous architectures and Internet-connected de-
vices gives rise to a new opportunity. A weak processor can call upon a
stronger processor or a cloud server to perform a complete batch train-
ing pass once a concept drift is detected – trading power or network
bandwidth for increased accuracy.
We capitalize on this opportunity in two steps. We first develop a compu-
tationally efficient bound for changes in any linear model with convex,
differentiable loss. We then propose a sliding window-based algorithm
that uses a small number of batch model computations to maintain an
accurate model of the data stream. It uses the bound to continuously
evaluate the difference between the parameters of the existing model and
a hypothetical optimal model, triggering computation only as needed.
Empirical evaluation on real and synthetic datasets shows that our pro-
posed algorithm adapts well to concept drifts and provides a better
tradeoff between the number of model computations and model accu-
racy than classic concept drift detectors. When predicting changes in
electricity prices, for example, we achieve 6% better accuracy than the
popular EDDM, using only 20 model computations.

1 Introduction

Consider a computationally limited device like a wireless sensor or a router
that receives an infinite stream of (occasionally) labeled samples, and applies
machine learning to perform tasks such as gesture recognition or network attack
detection, or employs it as part of a mobile healthcare application [12, 20]. Classic
offline learning algorithms assume a fixed distribution of the data to make some
guarantees about the accuracy of learned model. However, this is not always the
case in data streams, where the underlying distribution may change over time.
This is known as a concept drift. To maintain an accurate model, the device has
to update the model whenever the concept changes, a computationally expensive
task.



2 H. Sivan et al.

Concept drift has been widely studied. Algorithms designed for learning from
data streams with concept drifts rely on two main strategies. Incremental learn-
ing algorithms [32, 31, 27, 24, 7] adapt to the new concept implicitly by updating
the model periodically. They incrementally update the model using only the
previous model and a single new sample from the stream rather than an entire
batch of samples. However, for stochastic gradient descent, which is a popular
learning method for incremental algorithms, the convergence rate is approxi-
mately linearly dependent on the condition number of the problem [6, p. 467].
Concept drifts such as changes in variable scaling or covariance structure can
increase this condition number, causing slower adaptation to the new concept
(since incremental algorithms process one sample at a time). Conversely, algo-
rithms based on either sliding windows or adaptive windows use a batch of recent
samples to compute the current model [30, 3]. Such algorithms are more immune
to outliers since multiple samples are used simultaneously. They also explicitly
forget irrelevant samples, as the computed model is based only on samples that
appear in a recent window. Despite these advantages, sliding window algorithms
are less computationally efficient than incremental algorithms. As such, they are
difficult to use in settings with low-powered devices such as those used in edge
computing and IoT (Internet of Things) [29, 20].

Connected devices in edge computing and IoT settings present a new oppor-
tunity to tradeoff communication or battery power for better accuracy. These
often have limited computational power, but are connected to stronger machines.
Smart cities, for example, are composed of many weak sensors which use a cloud
server to perform learning tasks [2]. Thus, weak edge devices can occasionally
call on stronger machines for heavy computational tasks such as batch learning.

However, many weak devices could flood the network and overwhelm the
cloud. This gives rise to a tradeoff between accuracy and the network overhead
(or required computations). A similar tradeoff exists in heterogeneous archi-
tectures, which incorporate power-efficient weak processors and power-hungry
strong processors on the same device. These are common in edge computing
settings where client or edge devices are often battery-powered [19]. The weak
processor can wake the strong processor to perform computationally intensive
tasks such as recomputing the model, but with higher power consumption. Algo-
rithms must therefore be carefully designed to minimize model recomputations
by efficiently detecting when they are necessary.

Our Contributions We present DRUiD (for Drift detectoR from boUnded
Distance): a novel sliding window algorithm designed for learning from data
streams in edge computing and IoT settings. DRUiD is suitable for any linear
model with convex differentiable loss, while supporting both classification and
regression tasks.

We develop a bound that estimates the difference between the last batch-
computed model and the hypothetical model that could be computed from the
current position of the sliding window. While most other algorithms monitor the
error rate of the model to detect concept drifts, DRUiD monitors changes to the



Online Linear Models for Edge Computing 3

model coefficients. By only recomputing models as needed, DRUiD reduces the
number of model recomputations while maintaining high accuracy. We also show
that our new bound is tighter than bounds in previous work [23] by recasting the
mathematical proof of the bounds from prior work in simpler, geometric terms.
Our reanalysis also points to a limitation on using previous bounds to infer the
class predictions of the hypothetical model.

Evaluated on synthetic and real-world data sets, DRUiD provides more ac-
curate predictions than other online learning methods. It also provides more
accurate predictions than an equivalent method using previous bounds. For ex-
ample, when predicting change in electricity price, DRUiD achieves 6% higher
accuracy over existing work while recomputing only 20 times (roughly 0.04% of
the stream length), or 2.5% higher accuracy with only 10 recomputations.

2 Related Work

We divide existing work on concept drift into algorithms which focus on ac-
curately detecting concept changes, and incremental algorithms that implicitly
adapt the learned model to the new concept.

Concept Drift Detection DDM by Gama et al. [13] monitors the classifier error
rate by assuming that it decreases as the number of examples increases. If the er-
ror rate increases significantly the data is considered to have undergone concept
drift. Similarly, EDDM by Baena-Garćıa et al. [1] detects concept drifts by mon-
itoring the number of correct predictions between two consecutive classification
errors.

Some adaptive algorithms also rely on sliding windows. FLORA2 by Wid-
mer and Kubat [30] adjusts the window size to maintain model accuracy above
a user-defined accuracy threshold. Harel et al. [15] use an adaptive sliding win-
dow to detect concept drifts: each window is split several times to different train
and test sets, and the models built from each partition are expected to have
similar accuracy. Otherwise, a concept drift is likely to have occurred. Multi-
ple model computations make this approach unsuitable for systems with lim-
ited computational resources. Klinkenberg [18] suggests monitoring the values of
three performance indicators – accuracy, recall and precision. If a concept drift
is detected, the window is decreased to its minimal size, which is equal to one
batch size. Klinkenberg and Joachims [17] presented an approach that selects an
SVM window size such that the estimated generalization error on new examples
is minimized. Such approaches require batch computation whenever the window
is adjusted, or even to set its size in the first place, making them impractical
when computational power is limited. ADWIN by Bifet and Gavaldà [3] adapts
the window size by monitoring the difference in the mean value of the samples
for every potential split of the window, and shrinking the window if this differ-
ence is too large. It is designed for one-dimensional samples and requires that
the feature values be within a known range.

Our algorithm resembles concept drift detectors in that it considers both
the features and the labels when detecting concept drifts. However, unlike most



4 H. Sivan et al.

concept drift detectors, which only monitor the predictions of the model, we can
monitor changes to the model coefficients. As we show in our evaluation, this
results in superior tradeoff of model computation and accuracy.

DILSQ by Gabel et al. [10] is a distributed sliding window algorithm that
triggers model recomputation when the Euclidean distance between models is
too large. Though similar to DRUiD in that respect, DILSQ focuses on reducing
the network overhead using geometric monitoring techniques [28, 11], rather than
trading accuracy, and is limited to least squares regression models.

Incremental Learning These algorithms can implicitly adapt to concept drifts.
One such example is SGD, which applies first-order updates to the model [31].
Other incremental algorithms use second-order optimization, such as AROW
by Crammer et al. [7] and NAROW by Orabona and Crammer [24]. Although
not explicitly designed for concept drift detection, they may be adapted for this
task. Our proposed algorithm can use any incremental learner internally when a
concept drift is suspected, then use batch learning from the sliding window once
enough samples from the new concept have been obtained.

3 Problem Definition and Notations

Consider a stream of data, where only some of the samples are labeled. The la-
beled data arrives as tuples {xi, yi}, while yi ∈ {−1, 1} for classification problems
or yi ∈ R for regression problems. Unlabeled samples have yi = null.

We focus on sliding windows with a fixed or time-based window size. When a
new labeled sample arrives, the window is updated – older samples in the window
are removed and the new sample is added. We define W to be the sliding window
at time t, and let D be the set of indices of labeled samples inside W .

Let f(x, β) = xTβ be a linear function and let the loss function `(·, ·) be
a differentiable and convex function with respect to the second argument. The
model β∗t is the optimal solution for the following optimization problem:

β∗t = arg min
β∈Rd

C
∑
i∈D

`(yi, f(xi, β)) +
1

2
‖β‖2, C > 0. (1)

Given an objective function of the form a
∑
i∈D `(yi, f(xi, β)) + b‖β‖2, choosing

C = a
2b will bring it to the standard form (1).

The optimization problem could be classification or regression, where for
classification the linear classifier is ŷ = sgn (f(x, β∗t )) while for regression the
linear model is ŷ = f(x, β∗t ).

For simplicity, we define a compact notation for the loss function for a specific
sample. Let `i := `(yi, f(xi, β)) be the loss with respect to sample {xi, yi}. Then
∇`i(β∗) is the gradient of `i with respect to β at the point β∗.

This work focuses on the problem of maintaining high model accuracy over
a stream of data with concept drift. The näıve approach would be to compute
a new optimal solution β∗t for every window update, which is infeasible if the
computational power is limited. Instead, we aim to understand when concept
drift occurs and to compute a new model only then.



Online Linear Models for Edge Computing 5

4 Bounding Model Differences

Consider two sliding windows, W1 and W2, where W1 is the sliding window at
some previous time t1 and W2 is the window at current time tcurrent. If the
concept we are trying to model has not changed, we expect the two models
computed from two windows to be similar. For example, the Euclidean distance
between the models is expected to be small. When the concept has changed, the
opposite is expected.

We first develop a bound that estimates the difference between the last com-
puted model and the model based on the current sliding window, without ac-
tually computing it. In Section 4.3 we propose algorithm that uses this bound
to monitor that difference: it computes a new model only when the estimated
difference is large.

4.1 Bound the Distance Between Models

Let β1 and β2 be the models trained on the labeled samples in the windows
W1 and W2. We define the difference between two models as the Euclidean
distance between the two model vectors: ‖β∗1 − β∗2‖. We propose a bound for this
distance that can be computed without knowing β∗2 . Monitoring this bound over
the stream helps the algorithms detect changes in the concept, thus preventing
unnecessary computations while maintaining accurate models.

Theorem 1. Let P be an optimization problem over a window W with sample
indices D, of the standard form (1):

P : β∗p = arg min
β∈Rd

Cp
∑
i∈D

`i +
1

2
‖β‖2,

with its associated constant CP . Let β∗1 be the optimal solution of P1 over previous
window W1 containing the labeled samples with indices D1, let β∗2 be the solution
of P2 over current window W2 containing labeled samples D2, let C1 be the
associated constant of P1 and let C2 be the associated constant of P2. Let DA be
the set of indices of labeled samples added in W2: DA = D2 \ D1. Similarly, let
DR be the set of indices of samples removed in W2: DR = D1 \ D2. Finally, let
∆g be

∆g :=
∑
i∈DA

∇`i(β∗1)−
∑
i∈DR

∇`i(β∗1).

Then the distance between β∗1 and β∗2 is bounded by: ‖β∗1 − β∗2‖ ≤ 2‖r‖, where

r =
1

2

(
β∗1 −

C2

C1
β∗1 + C2∆g

)
. (2)

Theorem 1 bounds the difference between computed models for any convex
differentiable loss given the difference of their training sets. For example, we can
apply Theorem 1 to L2-regularized logistic regression, as defined in Liblinear [9],



6 H. Sivan et al.

Table 1. Objective functions, losses, and associated bound parameter r.

Model Objective Function Loss r

L2-reg LR min
β
C
∑
i

log
(
1 + exp(−yixTi β)

)
+ 1

2
‖β‖2 log

(
1 + exp(−yixTi β)

)
C
2
∆g

L2-reg SVM min
β
C
∑
i

(
max{0, 1− yixTi β}

)2
+ 1

2
‖β‖2

(
max{0, 1− yixTi β}

)2 C
2
∆g

Ridge Reg. min
β

∑
i

(
yi − xTi β

)2
+ α‖β‖2

(
yi − xTi β

)2 1
4α
∆g

C1 = C2 = C. Assigning this in (2) gives r = C
2∆g. For L2-regularized MSE

loss, the constants C1 and C2 depend on the number of samples in the windows,
and thus may differ if the size of the windows W1 and W2 is different. Table 1
lists r for several important optimization problems.

Proof. The proof of Theorem 1 proceeds in three steps: (i) use the convexity of
the objective function to get a sphere that contains β∗2 ; (ii) use the convexity of
the objective function again to express the sphere’s radius as a function of ∆g;
and (iii) bound the distance between β∗1 and β∗2 using geometric arguments.

(i) Sphere Shape Around β∗2 : This step adapts the proof in [23] to the canonical
form and simplifies it. Recall that β∗2 is the optimal solution of (1), so according
to the first-order optimality condition [6], C2

∑
i∈D2

∇`i(β∗2)+β∗2 = 0. This could
be written as

β∗2 = −C2

∑
i∈D2

∇`i(β∗2). (3)

`i is convex and differentiable, and therefore its gradient is monotonic non-
decreasing (see Lemma 1 in [8] for the proof of this feature of convex function):

(∇`i(β∗2)−∇`i(β∗1))T (β∗2 − β∗1) ≥ 0. (4)

By summing (4) over all i ∈ D2, opening brackets and rearranging the inequality,
we obtain: ∑

i∈D2

∇`i(β∗2)T (β∗2 − β∗1) ≥
∑
i∈D2

∇`i(β∗1)T (β∗2 − β∗1). (5)

Multiplying both sides of (5) with C2 (C2 > 0), and using (3), gives

β∗T2 (β∗2 − β∗1) + C2

∑
i∈D2

∇`i(β∗1)T (β∗2 − β∗1) ≤ 0. (6)

Denote r := 1
2

(
β∗1 + C2

∑
i∈D2

∇`i(β∗1)
)

, and observe that we can write:

β∗1 − r = 1
2

(
β∗1 − C2

∑
i∈D2

∇`i(β∗1)
)
. Completing the square of (6), we have:

‖β∗2 − (β∗1 − r)‖
2

= β∗T2 (β∗2 − β∗1) + C2

∑
i∈D2

∇`i(β∗1)T (β∗2 − β∗1)︸ ︷︷ ︸
≤0, due to (6)

+‖r‖2.



Online Linear Models for Edge Computing 7

Then from (6) we have ‖β∗2 − (β∗1 − r)‖
2 ≤ ‖r‖2. Denoting m := β∗1 − r, we can

rewrite it as: β∗2 ∈ Ω, where Ω :=
{
β
∣∣∣ ‖β −m‖2 ≤ ‖r‖2}. Thus the new optimal

solution β∗2 is within a sphere Ω with center m and radius vector r.

(ii) Express the Radius Vector as a Function of ∆g: β∗1 is the optimal solution
of (1). Then by the first-order optimality condition: C1

∑
i∈D1

∇`i(β∗1)+β∗1 = 0.

This implies
∑
i∈D1

∇`i(β∗1) = − β∗1
C1

. From the fact that D2 = D1 + DA − DR,
and the definition of ∆g:∑

i∈D2

∇`i(β∗1) =
∑
i∈D1

∇`i(β∗1) +
∑
i∈DA

∇`i(β∗1)−
∑
i∈DR

∇`i(β∗1)︸ ︷︷ ︸
,∆g

= −β
∗
1

C1
+∆g.

Substituting this into the definition of r above, we obtain (2).

(iii) Upper Bounds to ‖β∗1 − β∗2‖: We observe that both β∗1 and β∗2 are inside
or on the surface of the sphere Ω. For β∗1 this follows since Ω is centered at
m = β∗1 − r with radius vector r. For β∗2 this property is obtained from the
definition of Ω.

This implies that the maximum distance between β∗1 and β∗2 is obtained
when β∗1 , β

∗
2 are on the surface of the sphere at two opposite sides of the sphere’s

diameter, which has length 2‖r‖, yielding the upper bound in Theorem 1. ut

Improved Tightness The bound in Theorem 1 is tighter than the previous
bound [23, Corollary 2] by a factor of

√
d, and in fact does not depend on the

number of attributes d. The proof is technical and omitted for space reasons. The
intuition is that [23] relies on summing d bounds on the coefficients of β∗1 − β∗2 .

Tikhonov Regularization We can extend our approach to Tikhonov Reg-
ularization with an invertible Tikhonov matrix A [6]. The objective function
remains convex with respect to the weights, and the canonical form (1) changes

to: β∗ = arg minβ∈Rd C
∑
i∈D `i + 1

2‖Aβ‖
2
. By the first-order optimality con-

dition, C2

∑
i∈D∇`i(β∗) + ATAβ∗ = 0. Repeating the steps for the proof of

Theorem 1 starting from (3), we obtain: r = 1
2

(
β∗1 − C2

C1
β∗1 + C2(ATA)−1∆g

)
.

The only change to r is the addition of (ATA)−1 before ∆g.

4.2 Bounding the Predictions of the New Model

To compare to previous work [23], we describe an alternative measure for the
difference between two models: the difference in the prediction of the two models
for a given sample. We describe upper and lower bounds for the prediction of β∗2
for a new sample. As before, we can compute these bounds without computing
β∗2 , using the predictions from β∗1 .



8 H. Sivan et al.

Using the observation from Section 4.1 that β∗2 is within a sphere Ω with
center m and radius vector r, we can obtain lower and upper bounds on applying
β∗2 to a new sample x:

Lemma 1. Let β∗1 , β∗2 and r be as in Theorem 1, and let x be a sample. Then
the upper and lower bounds on the prediction of β∗2 for x are:

L(xTβ∗2) := min
β∈Ω

xTβ = xTβ∗1 − xT r − ‖x‖‖r‖ (7a)

U(xTβ∗2) := max
β∈Ω

xTβ = xTβ∗1 − xT r + ‖x‖‖r‖. (7b)

The proof follows by applying Theorem 1, then expressing β as m+u, where
m is the center of the sphere Ω, u is parallel to x, and ‖u‖ = ‖r‖. See Okumura
et al. [23] for an alternative derivation of these bounds in a different form.

Lemma 1 could be used for concept drift detection in classification problems:
if the upper and lower bounds (7) agree on the sign, then the classification of β∗2
is known [23]. The frequency of the disagreement between the bounds could be
another indication for the quality of β∗1 ; as the deviation of the current model
from the older model increases due to concept drift, we expect more frequent
sign disagreement as well.

However, it turns out that the bounds only agree on the class of a new sample
when β∗1 and β∗2 also agree. Since both β∗1 and β∗2 are inside or on the surface of
the sphere Ω, then from the definition of L(xTβ∗2) and U(xTβ∗2) we have that
L(xTβ∗2) ≤ xTβ∗1 , x

Tβ∗2 ≤ U(xTβ∗2). Hence, if sgn
(
xTβ∗1

)
6= sgn

(
xTβ∗2

)
, then

necessarily sgn
(
L(xTβ∗2)

)
6= sgn

(
U(xTβ∗2)

)
.

The above implies that if the class of a sample is different under β∗1 and β∗2 ,
it cannot be determined from the bounds (7), and instead the bounds disagree
on the sign (this limitation also applies to the bounds from [23]). Moreover, it
is still possible that the bounds disagree even if the classifiers do agree on the
classification. Therefore, this method for evaluating the quality of β∗1 is more
sensitive to the data distribution than the bound in Section 4.1.

4.3 The DRUiD Algorithm

DRUiD is a sliding window algorithm suitable for both classification and regres-
sion problems. For every new sample that arrives, DRUiD: (a) computes β∗1 ’s
prediction of the new sample and updates the sliding window; (b) bounds the
difference ‖β∗1 − β∗2‖ using Theorem 1; and (c) if the difference is too large, re-
computes β∗1 from the current window. Algorithm 1 shows how DRUiD handles
new samples. We describe DRUiD in detail below.

As long as the bound indicates that β∗1 and β∗2 are similar, DRUiD uses the
last computed model β∗1 for prediction; however, it also maintains an incremen-
tally updated model βcur. If the bound indicates that the concept is changing,
DRUiD switches to the incrementally updated model βcur. Finally, once enough
labeled samples from the new concept are available, DRUiD recomputes β∗1 using
a full batch learning pass.



Online Linear Models for Edge Computing 9

Algorithm 1 DRUiD

initialization: βcur ← β∗
1 , nA ← 0 , nR ← 0 , ∆g ← 0 , numWarnings← 0

procedure HandleNewLabeledSample({xi, yi})
Let {xr, yr} be the oldest sample in the sliding window W
Update sliding window W and count of added (removed) samples nA (nR)
∆g ← ∆g +∇`i(β∗

1 )−∇`r(β∗
1 )

βcur ← incrementalUpdate(βcur, {xi, yi})
if nA < N then

Collect ‖∆g‖ for fitting
else

if nA = N then
Fit χd to collected ‖∆g‖ and choose Tα such that Pr [‖∆g‖ ≤ Tα] > α

if ‖∆g‖ > Tα then numWarnings← numWarnings+ 1
else numWarnings← 0

if numWarnings > TN then
Train on window W : β∗

1 ← batchTrain(W )
Reset window: βcur ← β∗

1 , nA ← 0 , ∆g ← 0

procedure Predict(x)
if numWarnings = 0 then return β∗

1
Tx

else return βTcurx

DRUiD detects concept drifts by monitoring changes in ‖r‖ from Theorem 1.
When new labeled samples arrive, DRUiD updates ∆g and the sliding window
(since r is a linear function of ∆g, monitoring changes in ∆g is equivalent to
monitoring changes in r); it also fits a χd distribution to ‖∆g‖, where degrees
of freedom d is the number of attributes of the data. Once enough new samples
have arrived to accurately estimate the distribution parameters of ‖∆g‖, DRUiD
tests for potential concept drifts (we denote this constant N and set it to the
window size in our evaluation). We use a simple one-tailed test1: a potential
concept drift occurs whenever ‖∆g‖ is above a user-determined α percentile of
the fitted χd distribution, denoted as Tα: Pr [‖∆g‖ ≤ Tα] > α.

Even when a potential concept drift is detected, DRUiD does not immediately
recompute the model. Instead, it waits until ‖∆g‖ is above the threshold Tα for
TN times in a row (we set TN to the window size). This not only guarantees
the batch learner a sufficiently large sample from the new concept, but also
helps reduce false positives caused by outliers. To maintain high accuracy while
collecting enough samples for batch learning, DRUiD switches to using βcur
for predictions instead of β∗1 . The model βcur is initialized to β∗1 after batch
recomputation and is incrementally updated for each new labeled sample, for
example using an SGD update step [31]. However, it is only used after the first
potential concept drift is detected, and only until enough samples are collected.

1 We caution against ascribing such tests too much meaning. If values of ∆g are i.i.d.
Gaussians, then ‖∆g‖ ∼ χd. However, as with similar tests in the literature, in
practice the elements are seldom i.i.d. Gaussians and even successive ∆g are often
not independent. Our evaluation in Section 5 explores a range of thresholds.



10 H. Sivan et al.

5 Evaluation

We evaluate DRUiD on real-world and synthetic datasets.

We consider batch model computation as a heavy operation which requires
waking up the stronger processor (in heterogeneous architectures) or communi-
cation with a remote server (in connected devices). An effective edge-computing
algorithm is able to tradeoff a small number of model computations for addi-
tional accuracy. To provide a point of comparison to other concept drift detection
algorithms, we also consider drift detection events as model computation.

We use tradeoff curves to evaluate performance and compare algorithms. For
every configuration of algorithm parameters, we plot a point with the resulting
accuracy as the Y coordinate and the number of computations as the X coordi-
nate. This builds a curve that shows how the algorithm behaves as we change
its parameters. Practitioners can then choose a suitable operating point based
on how many batch model computations they are willing to accept.

5.1 Experimental Setup

We compare DRUiD to several baseline algorithms. Since we are interested in
linear models, the baselines were chosen accordingly.

– Sliding Window is a non-adaptive, periodic sliding window algorithm, as
in the original FLORA [30]. A period parameter determines how often batch
model recomputation is performed: every labeled example, every two labeled
examples, and so on. The implementation of the algorithm uses Liblinear [9]
logistic regression with L2 regularization.

– Incremental SGD uses an SGD-based [31] first-order method update to
the model. We use the SGDClassifier implementation in sklearn [25], with
logistic regression loss. A full batch model is computed only once to obtain
the initial model.

– DDM by Gama et al. [13] and EDDM by Baena-Garćıa et al. [1] are two
popular concept drift detectors that can use batch mode or incremental base
learners. They monitor the base learner accuracy and decide when to update
models. We implemented batch and incremental modes for both algorithms
using the Tornado framework [26].

– PredSign: to compare to existing bounds on model predictions [23], we de-
scribe an algorithm that uses the signs of the classification bounds from Sec-
tion 4.2 to decide when a model should be recomputed. As with DRUiD, we
update ∆g and the sliding window when labeled samples arrive. Unlabeled
sample are first evaluated using the bounds U and L. When the bounds U
and L have different sign, this could indicate a concept drift. Once the num-
ber of samples for which the U and L bounds disagree on the sign exceeds a
user-defined threshold TD, PredSign recomputes the model β∗1 .

– ADWIN [3] is a concept drift detector for batch or incremental base learn-
ers. We used the implementation in scikit-multiflow [21]: every time a concept
drift is detected, we compute a new model from the samples in the adap-



Online Linear Models for Edge Computing 11

tive window. ADWIN’s performance across all experiments was equivalent or
inferior to DDM’s and EDDM’s, and is therefore not included in the figures.
We mainly focus on L2 regularized logistic regression (Table 1). The fraction

of labeled examples is set to 10%: every 10th sample of the stream is considered
labeled while the other samples are treated as unlabeled (their labels are only
used for evaluation, not training). For the labeled examples, we use prequential
evaluation: we first use the samples to test the model and only then to train
it [14]. We set a window size of 2000 samples (i.e., 200 labels per window), and
use the first 2000 samples from the stream to tune the learning rates and reg-
ularization parameters. Results using different window sizes were fairly similar,
but this size resulted in best performance for the EDDM and DDM baselines.

The tradeoff curve for each algorithm is created by running it on the data with
different parameters. For DDM, we set drift levels α ∈ [0.01, 30]. The warning
level β was set according to the drift level – if α > 1, then β = α− 1; otherwise
β = α. For EDDM, we set warning levels α ∈ [0.1, 0.99999]. The drift level β was
set according to the warning level – if the α > 0.05, then β = α−0.05; otherwise
β = α. We ran PredSign with threshold TD ∈ [60, 50000]. For DRUiD, we set
α values ∈ [0.01, 0.9999999]. For ADWIN, we set δ values ∈ [0.0001, 0.9999999].
Finally, the period parameter for Sliding Window was set between 60 to 30000.

5.2 Electricity Pricing Dataset

The ELEC2 dataset described by Harris et al. [16] contains 45,312 instances
from Australian New South Wales Electricity, using 8 input attributes recorded
every half an hour for two years . The classification task is to predict a rise (yi =
+1) or a fall (yi = −1) in the price of electricity. We used the commonly available
MOA [4] version of the dataset without the date, day, and time attributes.

Figure 1a compares the performance of the different algorithms on the ELEC2
dataset. Every point in the graph represents one run of an algorithm on the entire
stream with a specific value of the algorithm’s meta-parameter – the closer to the
top-left corner, the better. Connecting the points creates a curve that describes
the tradeoff between computation and accuracy.

Overall, the accuracy of sliding window algorithms that use batch learning
(Sliding Window, PredSign and DRUiD) is superior to that of the incremental
learning algorithms (Incremental SGD, DDM and EDDM).

DRUiD gives the best tradeoff of model computations to accuracy: at every
point, it offers the highest accuracy with the fewest model computations. For
example, DRUiD achieves 70% accuracy using 10 batch model computations
throughout the entire stream (0.02% of stream size), while Sliding Window and
PredSign need two orders of magnitude more computation to reach similar accu-
racy. DDM, EDDM and Incremental SGD are unable to achieve such accuracy
on this dataset, despite careful tuning efforts.

Though PredSign is able to match the performance of the sliding window
algorithm, DRUiD offers a superior computation-accuracy tradeoff. Bounding
the model difference (Section 4.1) results in fewer false concept drift detections
than the approach in [23], which bounds the model prediction (Section 4.2).



12 H. Sivan et al.

PredSign Sliding Win. DDM EDDM DDM Batch DRUiD Incr. SGD

0 101 102 103

num model computations

50

60

70
ac

cu
ra

cy

(a) ELEC2.

0 101 102 103

num model computations

60

70

80

ac
cu

ra
cy

(b) Cover type.

0 101 102 103

num model computations

50

60

70

80

90

ac
cu

ra
cy

(c) Sine1.

Fig. 1. The tradeoff between accuracy and number of model computations in ELEC2,
Forest Covertype, and Sine1 datasets, for different parameter configurations of each al-
gorithm (EDDM Batch performance is similar to DDM Batch). Vertical lines in Sine1
show standard deviation over 5 experiments. The optimal number of model computa-
tions is 10, since this dataset has 10 concepts. In all cases DRUiD achieves a better
tradeoff, showing equal or superior accuracy at lower computational cost than all other
algorithms across a large range of configurations.

Surprisingly, the accuracy of DDM and EDDM drops even when we use more
model computations. Digging deeper, we saw that DDM and EDDM switch too
soon to a new model without sufficient training. A thorough parameter sweep
using a fine grid, including the parameter values recommended by the authors,
shows that for most configurations DDM and EDDM do not detect any concept
drifts in this data and simply use the initial model from the first window – it is
the optimal point for these algorithms on this dataset. The few configurations
that cause DDM and EDDM to detect drifts end up performing poorly as they
switch to a new model too soon, without sufficient training samples.

DDM and EDDM perform poorly in batch mode on all tested datasets, since
across all test configurations they yield few samples between the warning and
drift threshold, resulting in low accuracy models built from few samples2.

5.3 Forest Covertype

The Forest Covertype dataset contains the forest cover type for 30x30 meter
cells obtained from US Forest Service data [5]. It includes 581,012 samples with
54 attributes each that are divided into 7 classes. To convert the problem to a
binary classification problem, we set the label yi to +1 for class number 2, the
Lodgepole Pine cover type, and −1 for the rest of the classes (this results in near
equal number of positive and negative examples).

Figure 1b shows the computation-accuracy tradeoff for this dataset. Sliding
window algorithms give more accurate results than the incremental algorithms,

2 As far as we can tell, this is consistent with practice: the implementations of DDM
and EDDM that we found use incremental base learners [26, 22, 4].



Online Linear Models for Edge Computing 13

0 101 102 103

num model computations

60

80
ac

cu
ra

cy σ=1

0 101 102 103

num model computations

σ=10

0 101 102 103

num model computations

σ=20

PredSign Sliding Win. DDM EDDM DRUiD Incr. SGD

Fig. 2. Tradeoff curves for the Sine1+ dataset with different scale values (σ). The
accuracy on the incremental based algorithms drops where the scale is larger.

except for the extreme case where the number of model computations is close to
zero. DRUiD shows the best accuracy with the least model computations.

5.4 Sine1+

The Sine1+ artificial dataset is based on the Sine1 artificial dataset presented
in [13, 1], but extended to more than 2 attributes and to allow non-uniform
scales. It contains 9 abrupt concept drifts, each with 10,000 samples (hence the
optimal number of model computations is 10). The dataset has d ≥ 2 attributes:
x1 is uniformly distributed in [0, σ], where σ ≥ 1 sets its scale compared to other
attributes x2, ..., xd which are uniformly distributed in [0, 1]. In the first concept,

points that lie below the curve xd = sin
(

(x1/σ)+
∑d−1

i=2 xi

d−1

)
are classified as +1

and the rest are classified as −1. After the concept drift, the classification is
reversed. Note that for d = 2, σ = 1 we get the original Sine1 dataset, with the
separating line x2 = sin(x1).

Figure 1c shows the computation-accuracy tradeoff for the original Sine1
dataset (d = 2 and σ = 1). Every point in the graph is the average of 5 runs
with different random seeds (for every seed, all algorithms see the same data),
and the vertical lines are the standard deviation error bars.

DRUiD detects all concept drifts even when set to very low sensitivity levels
(high α), so the number of model computations does not go below 10. It main-
tains high accuracy and a small number of model computations for all α values.
For almost every number of model computations, PredSign accuracy is higher
than Sliding Window. This is because PredSign can change the timing of its
model computations, which is not possible in Sliding Window.

Figure 2 shows the computation-accuracy tradeoff for d = 2 and different σ
values. As we explain below, DRUiD’s batch mode computation maintains high
accuracy even as the problem becomes increasingly ill-conditioned.

Conversely, incremental algorithms are sensitive to non-uniform attribute
scales. Figure 3 shows the effect of scale on convergence in the Sine1+ dataset.
The top figures show the accuracy over time of Incremental SGD, DDM, and
DRUiD between two consecutive concept drifts (EDDM behaves similarly to



14 H. Sivan et al.

40000 45000
num stream samples

0

50

100

ac
cu

ra
cy

σ=1

40000 45000
num stream samples

σ=10

40000 45000
num stream samples

σ=20

Incr. SGD
DDM
DRUiD

0 50 100
β2

−20

−10

0

10

β 1

σ=1

0 50 100
β2

σ=10

0 50 100
β2

σ=20

Fig. 3. Effect of different σ values on Sine1+. Top: accuracy over time between two
concept drifts. Bottom: the contour lines of the L2-regularized logistic regression ob-
jective functions. The optimization problem becomes increasingly ill-conditioned when
the scale σ increases, so Incremental SGD recover more slowly after a concept drift.

DDM). As σ increases, the convergence time of the incremental based algo-
rithms also grows, as expected [6, p. 467]. The bottom figures show the contour
lines of the L2-regularized logistic regression objective functions for different σ
values (the loss surface). As σ increases, the shape of the loss surface becomes
more elliptic, with a higher condition number and slower convergence for gradi-
ent descent methods. For higher condition number, the batch based algorithms
require more iterations of gradient descent to converge on recomputation of a
new model. However, this recomputation is performed on the strong processor or
cloud server, with no effect on the accuracy. The effect of σ does not depend on
the number of attributes. Using d = 50 attributes yields similar results to only
2: larger σ values reduce the accuracy of incremental algorithms, even though σ
only affects x1 (figures omitted due to lack of space).

Feature normalization or other preconditioning is not always possible in
streams that have concept drifts, since the distribution of the attributes is not
known and can change unexpectedly. Algorithms that use batch learning are bet-
ter suited for ill-conditioned streams than relying solely on incremental learning.

5.5 Ridge Regression

We evaluate DRUiD performance on an artificial regression task, and compare
it to Incremental SGD and Sliding Window (PredSign, DDM, and EDDM only
support classification). We generate 10 concepts, each with a different true model
βtrue with 2 coefficients drawn from a standard normal distribution. For each
epoch concept we generate 10,000 samples, where each sample x has 2 attributes
drawn from a standard normal distribution. As with Sine1+, one of the attributes



Online Linear Models for Edge Computing 15

is then expanded by a factor of σ ≥ 1. Each label is y = xTβtrue + ε, where ε is
random Gaussian noise: ε ∼ N(0, 1).

As in the Sine1+ dataset, non-uniform scaling increases the condition number
of the problem. The computation and accuracy tradeoff follow similar trends as
in classification (figures omitted due to lack of space). For a well-conditioned
problem, the incremental algorithm and DRUiD achieve the same RMSE as the
best periodic algorithm (albeit with far fewer model computations). However,
when the condition number increases, DRUiD achieves a better tradeoff than
the incremental algorithm, since the batch learning convergence rate does not
affect the accuracy along the stream.

6 Conclusions

DRUiD is an online algorithm for data streams with concept drifts, designed
for edge computing systems. It improves accuracy with minimal cost by running
batch computations of new data only when the model changes. DRUiD relies
on an improved bound for the difference between two linear models with con-
vex differentiable loss. Evaluation on real and synthetic data shows that DRUiD
provides a better tradeoff between model computation and accuracy than tra-
ditional concept drift detectors, and that its batch-based computation is better
suited for ill-conditioned problems than methods based on incremental learning.

References

1. Baena-Garćıa, M., Campo-Ávila, J., Fidalgo-Merino, R., Bifet, A., Gavald, R.,
Morales-Bueno, R.: Early drift detection method. In: Fourth international work-
shop on knowledge discovery from data streams (2006)

2. B.B, P.R., Saluja, P., Sharma, N., Mittal, A., Sharma, S.: Cloud computing for
internet of things & sensing based applications. ICST (2012)

3. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
SIAM ’07 (2007)

4. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
JMLR 11, 1601–1604 (2010)

5. Blackard, J.A., Dean, D.J.: Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables.
Computers and Electronics in Agriculture 24, 131–151 (1999)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

7. Crammer, K., Kulesza, A., Dredze, M.: Adaptive regularization of weight vectors.
Mach. Learn. 91(2), 155–187 (05 2013)

8. Dunn, J.: Convexity, monotonicity, and gradient processes in hilbert space. J.
Math. Anal. Appl. 53, 145–158 (01 1976)

9. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (06 2008)

10. Gabel, M., Keren, D., Schuster, A.: Monitoring least squares models of distributed
streams. KDD ’15 (2015)



16 H. Sivan et al.

11. Gabel, M., Keren, D., Schuster, A.: Anarchists, unite: Practical entropy approxi-
mation for distributed streams. KDD ’17 (2017)

12. Gama, J.: A survey on learning from data streams: current and future trends.
Progress in Artificial Intelligence 1(1), 45–55 (04 2012)

13. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Brazilian Symposium on Artificial Intelligence (2004)

14. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Mach. Learn. 90(3), 317–346 (Mar 2013)

15. Harel, M., Crammer, K., El-Yaniv, R., Mannor, S.: Concept drift detection through
resampling. ICML ’14 (2014)

16. Harries, M., South Wales, N.: Splice-2 comparative evaluation: Electricity pricing
(08 1999)

17. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector ma-
chines. ICML ’00 (2000)

18. Klinkenberg, R., Renz, I.: Adaptive information filtering: Learning drifting con-
cepts. FGML-98 (1998)

19. Liaqat, D., Jingoi, S., de Lara, E., Goel, A., To, W., Lee, K., De Moraes Garcia, I.,
Saldana, M.: Sidewinder: An energy efficient and developer friendly heterogeneous
architecture for continuous mobile sensing. ASPLOS ’16 (2016)

20. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth,
A.P.: Machine learning for internet of things data analysis: a survey. Digital Com-
munications and Networks 4(3), 161 – 175 (2018)

21. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: A multi-output
streaming framework. JMLR 19(72), 1–5 (2018)

22. Nishida, K.: Learning and Detecting Concept Drift. Ph.D. thesis, Hokkaido Uni-
versity (2008)

23. Okumura, S., Suzuki, Y., Takeuchi, I.: Quick sensitivity analysis for incremental
data modification and its application to leave-one-out CV in linear classification
problems. KDD ’15 (2015)

24. Orabona, F., Crammer, K.: New adaptive algorithms for online classification. NIPS
’10 (2010)

25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. JMLR 12, 2825–2830 (2011)

26. Pesaranghader, A., Viktor, H.L., Paquet, E.: A framework for classification in data
streams using multi-strategy learning. In: Calders, T., Ceci, M., Malerba, D. (eds.)
Discovery Science (2016)

27. Read, J.: Concept-drifting data streams are time series; the case for continuous
adaptation. CoRR abs/1810.02266 (2018)

28. Sharfman, I., Schuster, A., Keren, D.: Shape sensitive geometric monitoring. PODS
’08 (2008)

29. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges.
IEEE Internet of Things Journal 3(5), 637–646 (10 2016)

30. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23(1), 69–101 (4 1996)

31. Xu, W.: Towards optimal one pass large scale learning with averaged stochastic
gradient descent. CoRR abs/1107.2490 (2011)

32. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. ICML ’03 (2003)


