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Abstract. In the last few years, many different methods have been
focusing on using deep recurrent neural networks for natural language
generation. The most widely used sequence-to-sequence neural methods
are word-based: as such, they need a pre-processing step called delexical-
ization (conversely, relexicalization) to deal with uncommon or unknown
words. These forms of processing, however, give rise to models that depend
on the vocabulary used and are not completely neural.
In this work, we present an end-to-end sequence-to-sequence model with
attention mechanism which reads and generates at a character level,
no longer requiring delexicalization, tokenization, nor even lowercasing.
Moreover, since characters constitute the common “building blocks" of
every text, it also allows a more general approach to text generation,
enabling the possibility to exploit transfer learning for training. These
skills are obtained thanks to two major features: (i) the possibility to
alternate between the standard generation mechanism and a copy one,
which allows to directly copy input facts to produce outputs, and (ii) the
use of an original training pipeline that further improves the quality of
the generated texts.
We also introduce a new dataset called E2E+, designed to highlight the
copying capabilities of character-based models, that is a modified version
of the well-known E2E dataset used in the E2E Challenge. We tested our
model according to five broadly accepted metrics (including the widely
used bleu), showing that it yields competitive performance with respect
to both character-based and word-based approaches.

Keywords: Natural Language Processing · Data-to-text Generation ·
Deep Learning · Sequence-to-sequence · Dataset

1 Introduction

The ability of recurrent neural networks (RNNs) to model sequential data stimu-
lated interest towards deep learning models which face data-to-text generation.
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An interesting application is the generation of descriptions for factual tables that
consist of a set of field-value pairs; an example is shown in Table 4. We present
in this paper an effective end-to-end approach to this task.

Sequence-to-sequence frameworks [6, 23, 2] have proved to be very effective in
natural language generation (NLG) tasks [11, 26, 17], as well as in machine trans-
lation [6, 23, 4, 22] and in language modeling [3]. Usually, data are represented
word-by-word both in input and output sequences; anyways, such schemes can’t
be effective without a special, non-neural delexicalization phase that handles
unknown words, such as proper names or foreign words (see [26]). The delexical-
ization step has the benefit of reducing the dictionary size and, consequently, the
data sparsity, but it is affected by various shortcomings. In particular, according
to [9] - it needs some reliable mechanism for entity identification, i.e. the recogni-
tion of named entities inside text; - it requires a subsequent “re-lexicalization”
phase, where the original named entities take back placeholders’ place; - it cannot
account for lexical or morphological variations due to the specific entity, such as
gender and number agreements, that can’t be achieved without a clear context
awareness.

Recently, some strategies have been proposed to solve these issues: [10] and [21]
face this problem using a special neural copying mechanism that is quite effective
in alleviating the out-of-vocabulary words problem, while [16] tries to extend
neural networks with a post-processing phase that copies words as indicated by
the model’s output sequence. Some character-level aspects appear as a solution of
the issue as well, either as a fallback for rare words [15], or as subword units [22].

A significantly different approach consists in employing characters instead of
words, for input slot-value pairs tokenization as well as for the generation of the
final utterances, as done for instance in [1, 3].

In order to give an original contribution to the field, in this paper we present
a character-level sequence-to-sequence model with attention mechanism that
results in a completely neural end-to-end architecture. In contrast to traditional
word-based ones, it does not require delexicalization, tokenization nor lowercasing;
besides, according to our experiments it never hallucinates words, nor duplicates
them. As we will see, such an approach achieves rather interesting performance
results and produces a vocabulary-free model that is inherently more general, as
it does not depend on a specific domain’s set of terms, but rather on a general
alphabet. Because of this, it opens up the possibility, not viable when using
words, to adapt already trained networks to deal with different datasets.

More specifically, our model shows two important features, with respect to
the state-of-art architecture proposed by [4]: (i) a character-wise copy mechanism,
consisting in a soft switch between generation and copy mode, that disengages the
model to learn rare and unhelpful self-correspondences, and (ii) a peculiar training
procedure, which improves the internal representation capabilities, enhancing
recall; it consists in the exchange of encoder and decoder RNNs, (GRUs [6]
in our specific case), depending on whether the input is a tabular Meaning
Representation (MR) or a natural language sentence.
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Fig. 1. Encoder-decoder with attention model

As a further original contribution, we also introduce a new dataset, described in
section 3.1, whose particular structure allows to better highlight improvements in
copying/recalling abilities with respect to character-based state-of-art approaches.

In section 2, after resuming the main ideas on encoder-decoder methods with
attention, we detail our model: section 2.2 is devoted to explaining the copy
mechanism while in section 2.3 our peculiar training procedure is presented.
Section 3 includes the datasets descriptions, some implementation specifications,
the experimental framework and the analysis and evaluation of the achieved
results. Finally, in section 4 some conclusions are drawn, outlining future work.

2 Model Description

2.1 Summary on Encoder-decoder Architectures with Attention

The sequence-to-sequence encoder-decoder architecture with attention [4] is
represented in figure 1: on the left, the encoder, a bi-directional RNN, outputs
one annotation hj for each input token xj . Each vector hj corresponds to the
concatenation of the hidden states produced by the backward and forward RNNs.
On the right side of the figure, we find the decoder, which produces one state si
for each time step; on the center of the figure the attention mechanism is shown.
The main components of the attention mechanism are:
(i) the alignment model eij

eij = att(si−1, hj), 1 ≤ j ≤ Tx, 1 ≤ i ≤ Ty (1)

which is parameterized as a feedforward neural network and scores how well input
in position j-th and output observed in the i-th time instant match; Tx and Ty
are the length of the input and output sequences, respectively.
(ii) the attention probability distribution αij

αij =
exp(eij)∑Tx

k=1 exp(eik)
≡ [softmax(ei)]j , 1 ≤ j ≤ Tx, 1 ≤ i ≤ Ty (2)
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(ei is the vector whose j-th element is eij)
(iii) the context vector Ci

Ci =

Tx∑
j=1

αijhj , 1 ≤ i ≤ Ty, (3)

weighted sum of the encoder annotations hj .
According to [4], the context vector Ci is the key element for evaluating the

conditional probability P (yi|y1, . . . , yi−1,x) to output a target token yi, given the
previously outputted tokens y1, . . . , yi−1 and the input x. They in fact express
this probability as:

P (yi|y1, . . . , yi−1,x) = g(yi−1, si, Ci), (4)

where g is a non-linear, potentially multi-layered, function. So doing, the explicit
information about y1, . . . , yi−1 and x is replaced with the knowledge of the
context Ci and the decoder state si.

The model we present in this paper incorporates two additional mechanisms,
detailed in the next sections: a character-wise copy mechanism and a peculiar
training procedure based on GRUs switch.

2.2 Learning to Copy

On top of the just recalled model, we build a character-based copy mechanism
inspired by the Pointer-Generator Network [21], a word-based model that hy-
bridizes the Bahdanau traditional model and a Pointer Network [25]. Basing on
these ideas, in our model we identify two probability distributions that, differently
from what done by [21] and [28], act now on characters rather than on words:
the alphabet distribution Palph and the attention distribution Patt.

The former is the network’s generative probability of sampling a given char-
acter at time i, recalled in eq. (4):

P i
alph = softmax(V [si;Ci] + b), (5)

where V and b are trainable parameters.
The latter is the distribution reminded in eq. (2), created by the attention

mechanism over the input tokens, i.e. in our case, over input characters:

P ij
att ≡ αij (6)

In our method this distribution is used for directly copying characters from the
input to the output, pointing their input positions, while in [4] Patt is used only
internally to weigh the input annotations and create the context vector Ci.

The final probability of outputting a specific character c is obtained combining
Palph and Patt through the quantity pgen, defined later, which acts as a soft switch
between generating c or copying it:

P i(c) = pigen · P i
alph[c] + (1− pigen)

∑
j|xi=c

P ij
att(c), (7)
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where P i
alph[c] is the component of P i

alph corresponding to that character c.
The backpropagation training algorithm, therefore, brings pgen close to 1

when it is necessary to generate the output as in a standard encoder-decoder
with attention (P i(c) ' P i

alph[c]); conversely, pgen will be close to 0 (i.e. P i(c) '∑
j|xi=c P

j
att(c)) when a copying step is needed.

The model we propose therefore learns when to sample from Palph for selecting
the character to be generated, and when to sample from Patt for selecting the
character that has to be copied directly from the input.

This copy mechanism is fundamental to output all the unknown words present
in the input, i.e. words which never occur in the training set. In fact, generating
characters in the right order to reproduce unknown words is a sub-task not
“solvable” by a naive sequence-to-sequence model, which learns to output only
known words.

The generation probability pgen ∈ [0, 1] is computed as follows:

pigen = σ(Wy · ỹi−1 +Ws · si +Wp · pi−1gen +Wc · Ci) (8)

where σ is the sigmoid function, ỹi−1 is the last output character’s embedding, si
is the current decoder’s cell state and Ci is the current context vector. Wy, Ws,
Wc and Wp are the parameters whose training allows pgen to have the convenient
value.

We highlight that in our formulation pi−1gen, i.e. the value of pgen at time i− 1,
contributes to the determination of pigen. In fact, in a character-based model it is
desirable that this probability remains unchanged for a fair number of time steps,
and knowing its last value helps this behavior. This never happens in word-based
models (such as [21]), in which copying for a single time step is usually enough.

2.3 Switching GRUs

Aiming at improving performance, we enrich our model’ training pipeline with an
additional phase, which forces an appropriate language representation inside the
recurrent components of the model. In order to achieve this goal, the encoder and
the decoder do not own a fixed GRU, differently from what happens in classical
end-to-end approaches. The recurrent module is passed each time as a parameter,
depending on which one of the two training phases is actually performed.

In the first phase, similar to the usual one, the GRU assigned to the encoder
deals with a tabular representation x as input, the GRU assigned to the decoder
has to cope with natural language, and the model generates an output utterance
ỹ = F (x). Conversely, in the second phase GRUs are switched and we use as
input the just obtained natural language utterance ỹ to generate a new table
x̃ = G(ỹ) = G(F (x)). Therefore, the same model can build both F and G, thanks
to the switch of GRUs.

In other words, the learning iteration is performed as follows.

– A dataset example (x, y) is given. x is a tabular meaning representation and
y is the corresponding reference sentence.
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Table 1. Descriptive statistics: on the left, sizes of training, validation and test sets
are shown. On the right, the average number of characters, respectively for Meaning
Representations and natural language sentences, are presented

Dataset Number of instances Avg. number of characters

training validation test MRs NL sentences

E2E 42061 4672 4693 112.11 115.07
E2E+ 42061 4672 4693 112.91 115.65
Hotel 2210 275 275 52.74 61.31
Restaurant 2874 358 358 53.89 63.22

– We generate an output utterance ỹ = F (x)
– We perform an optimization step on the model’s parameters, aiming at

minimizing Lforward = loss(ỹ, y)
– We reconstruct the meaning representation x̃ back from the previously gen-

erated output: x̃ = G(ỹ) = G(F (x))
– We perform a further optimization step on the model’s parameters, this time

aiming at minimizing Lbackward = loss(x̃, x)

The higher training time, direct consequence of the just described technique,
is a convenient investment, as it brings an appreciable improvement of the model’s
performance (see section 3.3).

3 Experiments

3.1 Datasets

We tested our model on four datasets, whose main descriptive statistics are given
in table 1: among them, the most known and frequently used in literature is the
E2E dataset [18], used as benchmark for the E2E Challenge organized by the
Heriot-Watt University in 2017. It is a crowdsourced collection of roughly 50,000
instances, in which every input is a list of slot-value pairs and every expected
output is the corresponding natural language sentence. The dataset has been
partitioned by the challenge organizers in predefined training, validation and test
sets, conceived for training data-driven, end-to-end Natural Language Generation
models in the restaurant domain.

However, during our experiments, we noticed that the values contained in the
E2E dataset are a little naive in terms of variability. In other words, a slot like
name, that could virtually contain a very broad range of different values, is filled
alternating between 19 fixed possibilities. Moreover, values are partitioned among
training, validation and test set, in such a way that test set always contains
values that are also present in the training set. Consequently, we created a
modified version of the E2E dataset, called E2E+, as follows: we selected the slots
that represent more copy-susceptible attributes, i.e. name, near and food, and
conveniently replaced their values, in both meaning representations and reference
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sentences. New values for food are picked from Wikipedia’s list of adjectival forms
of countries and nations4, while both name and near are filled with New York
restaurants’ names contained in the Entree dataset presented in [5]. It is worth
noting that none of the values of name are found in near ; likewise, values that
belong to the training set are not found in the validation set nor in the test one,
and vice versa. This value partitioning shall ensure the absence of generation
bias in the copy mechanism, stimulating the models to copy attribute values,
regardless of their presence in the training set. The MR and 1st reference fields
in table 4 are instances of this new dataset.

Finally, we decided to test our model also on two datasets, Hotel and Restau-
rant, frequently used in literature (for instance in [26] and [9]). They are built on
a 12 attributes ontology: some attributes are common to both domains, while
others are domain specific. Every MR is a list of key-value pairs enclosed in a
dialogue act type, such as inform, used to present information about restaurants,
confirm, to check that a slot value has been recognized correctly, and reject, to
advise that the user’s constraints cannot be met. For the sake of compatibility,
we filtered out from Hotel and Restaurant all inputs whose dialogue act type was
not inform, and removed the dialogue act type. Besides, we changed the format
of the key-value pairs to E2E-like ones.

Tables are encoded simply converting all characters to ASCII and feeding
every corresponding index to the encoder, sequentially. The resulting model’s
vocabulary is independent of the input, allowing the application of the transfer
learning procedure.

3.2 Implementation Details

We developed our system using the PyTorch framework5, release 0.4.16. The
training has been carried out as described in subsection 2.3: this training procedure
needs the two GRUs to have the same dimensions, in terms of input size, hidden
size, number of layers and presence of a bias term. Moreover, they both have
to be bidirectional, even if the decoder ignores the backward part of its current
GRU.

We minimize the negative log-likelihood loss using teacher forcing [27] and
Adam [12], the latter being an optimizer that computes individual adaptive
learning rates. As a consequence of the length of the input sequences, a character-
based model is often subject to the exploding gradient problem, that we solved
via the well-known technique of gradient norm clipping [20].

We also propose a new formulation of P (c) that helps the model to learn
when it is necessary to start a copying phase:

4 https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_
for_countries_and_nations, consulted on August 30, 2018

5 Code and datasets are publicly available at https://github.com/marco-roberti/
char-data-to-text-gen

6 https://pytorch.org/
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P i(c) = pigen · P i
alph(c) + (1− pigen)

∑
j|xi=c

P i,j−1
att (c) (9)

Sometimes, our model has difficulty in focusing on the first letter it has to
copy. This may be caused by the variety of characters it could be attending on;
instead, it seems easier to learn to focus on the most largely seen characters, as
for instance ‘ ’ and ‘[’. As these special characters are very often the prefix of the
words we need to copy, when this focus is achieved, we would like the attention
distribution to be translated one step to the right, over the first letter that must
be copied. Therefore, the final probability of outputting a specific character c,
introduced in eq. (7), is modified to P i,j−1

att , i.e. the attention distribution shifted
one step to the right and normalized.

Notice that P i,j−1
att is the only shifted probability, while P i

alph remains un-
changed. Therefore, if the network is generating the next token (i.e. pigen ' 1 ),
the shift trick does not involve P i(c) and the network samples the next character
from P i

alph, as usual. This means that the shift operation is not degrading the
generation ability of the model, whilst improving the copying one.

3.3 Results and Discussion

In order to show that our model represents an effective and relevant improvement,
we carry out two different experimentations: an ablation study and a comparison
with two well-known models. The first model is the encoder-decoder architecture
with attention mechanism by [4] (hereafter “EDA”), used character-by-character.
The second one is TGen [8], a word-based model, still derived from [4], but
integrating a beam search mechanism and a reranker over the top k outputs,
in order to disadvantage utterances that do not verbalize all the information
contained in the MR. We chose it because it has been adopted as baseline in the
E2E NLG Challenge7.

We used the official code provided in the E2E NLG Challenge website for
TGen, and we developed our models and EDA in PyTorch, training them on
NVIDIA GPUs. Hyperparameter tuning is done through 10-fold cross-validation,
using the bleu metric [19] for evaluating each model. The training stopping
criterion was based on the absence of models’ performance improvements (see [8]).

We evaluated the models’ performance on test sets’ output utterances using
the Evaluation metrics script8 provided by the E2E NLG Challenge organizers. It
rates quality according to five different metrics: bleu [19], nist [7], meteor [13],
rouge_l [14] and cider [24].

Our first experimentation, the ablation study, refers to the E2E dataset
because of its wide diffusion, and is shown in table 2; “EDA_CS” identifies our
model, and ‘C’ and ‘S’ stand for “Copy” and “Switch”, the two major improvements
presented in this work. It is evident that the partially-improved networks are able

7 www.macs.hw.ac.uk/InteractionLab/E2E/
8 https://github.com/tuetschek/E2E-metrics



Copy Mechanism and Tailored Training for Character-based. . . 9

Table 2. The ablation study on the E2E dataset evidences the final performance
improvement reached by our model. Best values for each metric are highlighted (the
higher the better)

EDA

bleu 0.4999
nist 7.1146
meteor 0.3369
rouge_l 0.5634
cider 1.3176

EDA_C

bleu 0.6255
nist 7.7934
meteor 0.4401
rouge_l 0.6582
cider 1.7286

EDA_S

bleu 0.6538
nist 8.4601
meteor 0.4337
rouge_l 0.6646
cider 1.9944

EDA_CS

bleu 0.6705
nist 8.5150
meteor 0.4449
rouge_l 0.6894
cider 2.2355

Table 3. Performance comparison. Note the absence of transfer learning on dataset
E2E+ because in this case the training and fine-tuning datasets are the same. Best
values for each metric are highlighted (the higher the better)

E2E+ E2E Hotel Restaurant

EDA

bleu 0.3773 0.4999 0.4316 0.3599
nist 5.7835 7.1146 5.9708 5.5104
meteor 0.2672 0.3369 0.3552 0.3367
rouge_l 0.4638 0.5634 0.6609 0.5892
cider 0.2689 1.3176 3.9213 3.3792

TGen

bleu 0.6292 0.6593 0.5059 0.4074
nist 9.4070 8.6094 7.0913 6.4304
meteor 0.4367 0.4483 0.4246 0.3760
rouge_l 0.6724 0.6850 0.7277 0.6395
cider 2.8004 2.2338 5.0404 4.1650

EDA_CS

bleu 0.6197 0.6705 0.5515 0.4925
nist 9.2103 8.5150 7.4447 6.9813
meteor 0.4428 0.4449 0.4379 0.4191
rouge_l 0.6610 0.6894 0.7499 0.7002
cider 2.8118 2.2355 5.1376 4.7821

EDA_CSTL

bleu - 0.6580 0.5769 0.5099
nist - 8.5615 7.4286 7.3359
meteor - 0.4516 0.4439 0.4340
rouge_l - 0.6740 0.7616 0.7131
cider - 2.1803 5.3456 4.9915

to provide independent benefits to the performance. Those components cooperate
positively, as EDA_CS further enhances those results. Furthermore, the obtained
bleu metric value on the E2E test set would allow our model to be ranked fourth
in the E2E NLG Challenge, while its baseline TGen was ranked tenth.
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Our second experimentation, the comparison study, is shown in table 3.
The character-based design of EDA_CS led us to explore in this context also
a possible behavior as a transfer learning capable model: in order to test this
hypothesis, we used the weights learned during training on the E2E+ dataset
as the starting point for a fine-tuning phase on all the other datasets. We chose
E2E+ because it reduces the generation bias, as discussed in subsection 3.1. We
named this approach EDA_CSTL.

A first interesting result is that our model EDA_CS always obtains higher
metric values with respect to TGen on the Hotel and Restaurant datasets, and
three out of five higher metrics values on the E2E dataset. However, in the case
of E2E+, TGen achieves three out of five higher metrics values. These results
suggest that EDA_CS and TGen are comparable, at least from the point of view
of automatic metrics’ evaluation.

A more surprising result is that the approach EDA_CSTL allows to obtain
better performance with respect to training EDA_CS in the standard way on the
Hotel and Restaurant datasets (for the majority of metrics); on E2E, EDA_CSTL

outperforms EDA_CS only in one case (i.e. meteor metric).
Moreover, EDA_CSTL shows a bleu increment of at least 14% with respect

to TGen’s score when compared to both Hotel and Restaurant datasets.
Finally, the baseline model, EDA, is largely outperformed by all other exam-

ined methods.
Therefore, we can claim that our model exploits its transfer learning capabili-

ties effectively, showing very good performances in a context like data-to-text
generation in which the portability of features learned from different datasets, in
the extent of our knowledge, has not yet been explored.

We highlight that EDA_CS’s model’s good results are achieved even if it con-
sists in a fully end-to-end model which does not benefit from the delexicalization-
relexicalization procedure, differently from TGen. Most importantly, the latter
represents a word-based system: as such, it is bound to a specific, limited vocab-
ulary, in contrast to the general-purpose character one used in our work.

Table 4 reports the output of the analyzed models for a couple of MR, taken
from the E2E+ test set. The EDA’s inability to copy is clear, as it tends, in its
output, to substitute those values of name, food and near that do not appear in
the training set with known ones, guided by the first few characters of the input
slot’s content. Besides, it shows serious coverage issues, frequently ’forgetting’ to
report information, and/or repeating more times the same ones.

These troubles are not present in EDA_CS output utterances: the model
nearly always renders all of the input slots, still without duplicating any of them.
This goal is achieved even in absence of explicit coverage techniques thanks to our
peculiar training procedure, detailed in section 2.3, that for each input sample
minimizes also the loss on the reconstructed tabular input. It is worth noting
that the performance of TGen and EDA_CS are overall comparable, especially
when they deal with names or other expressions not present in training.

The joint analysis of the matrix of the attention distribution P ij
att and the

vector pgen allows a deeper understanding of how our model works.
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(a) On an E2E instance.

(b) On an E2E+ instance.

Fig. 2. Attention distribution (white means more attention) and pgen (white: generating,
black: copying), as calculated by the model
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Table 4. A comparison of the three models’ output on some MR of the E2E+ test set.
The first reference utterance is reported for convenience

MR name[New Viet Huong], eatType[pub], customer rating[1 out
of 5], near[Ecco]

1st reference The New Viet Huong is a pub near Ecco that has a customer rating
of 1 out of 5.

EDA_CS New Viet Huong is a pub near Ecco with a customer rating of 1 out
of 5.

TGen New Viet Huong is a pub near Ecco with a customer rating of 1 out
of 5.

EDA Near the riverside near the ERNick Restaurant is a pub near the
ERNicker’s.

MR
name[La Mirabelle], eatType[restaurant], food[Iraqi],
priceRange[high], area[riverside], familyFriendly[yes],
near[Mi Cocina]

1st reference
La Mirabelle is a children friendly restaurant located in the Riverside
area near to the Mi Cocina. It serves Iraqi food and is in the high
price range.

EDA_CS La Mirabelle is a high priced Iraqi restaurant located in the riverside
area near Mi Cocina. It is children friendly.

TGen La Mirabelle is a high priced Iraqi restaurant in the riverside area
near Mi Cocina. It is child friendly.

EDA
La Memaini is a high priced restaurant that serves Iranian food in the
high price range. It is located in the riverside area near Manganaro’s
Restaurant.

In figure 2 every row shows the attention probability distribution “seen”
when an output character is produced at the i-th time instant (i.e. the vector
P ij
att, 1 ≤ j ≤ Tx), while every column shows values of the attention distribution

corresponding to a specific input position j (i.e. the vector P ij
att, 1 ≤ i ≤ Ty). We

can therefore follow the white spots, corresponding to higher values of attention,
to understand the flow of the model’s attention during the generation of the
output utterance.

Moreover, pgen values, which lie in the numeric interval [0, 1], help us in the
interpretation of the attention: they are represented as a grayscale vector from
zero (black) to one (white) under the matrices. Values close to 0 mean copying
and those near 1 mean generating.

We can note that our model’s behavior varies significantly depending on
the dataset it has been trained on. Figure 2a shows the attention probability
distribution matrix of EDA_CS (together with pgen vector) trained on the E2E
dataset: as observed before, attribute values in this dataset have a very low
variability (and are already present in the training set), so that they can be
individually represented and easily generated by the decoder. In this case, a
typical pattern is the copy of only the first, discriminating character, clearly
noticeable in the graphical representation of the pgen vector, and the subsequent
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Fig. 3. Copying common words leads the model to “uncertain” values of pgen

generation of the others. Notice that the attention tends to remain improperly
focused on the same character for more than one output time step, as in the first
letter of “high”.

On the other hand, the copy mechanism shows its full potential when the
system must learn to copy attribute values, as in the E2E+ dataset. In figure 2b
the diagonal attention pattern is pervasive: (i) it occurs when the model actually
copies, as in “Harley Davidson” and “Coco Pazzo”, and (ii) as a soft track for the
generation, as in “customer rating”, where the copy-first-generate-rest behavior
emerges again.

A surprising effect is shown in figure 3, when the model is expected to copy
words that, instead, are usually generated: an initial difficulty in copying the
word “The”, that is usually a substring of a slot value, is ingeniously overcome
as follows. The first character is purely generated, as shown by the white color
in the underlying vector, and the sequence of the following characters, “he_”,
is half-generated and half-copied. Then, the value of pgen gets suddenly but
correctly close to 0 (black) until the closing square bracket is met. The network’s
output is not affected negatively by this confusion and the attention matrix
remains quite well-formed.

As a final remark, the metrics used, while being useful, well-known and
broadly accepted, do not reflect the ability to directly copy input facts to produce
outputs, so settling the rare word problem.

4 Conclusion

We showed in this paper an effective character-based end-to-end model that faces
data-to-text generation tasks. It takes advantage of a copy mechanism, that deals
successfully with the rare word problem, and of a specific training procedure,
characterized by the switching GRUs mechanism. These innovative contributions
to state-of-art further improve the quality of the generated texts.
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We highlight that our formulation of the copy mechanism is an original
character-based adaptation of [21], because of the use of pi−1gen to determine the
value of pigen, at the following time step. This helps the model in choosing whether
to maintain the same value for a fair number of time steps or not.

Besides, the use of characters allows the creation of more general models,
which do not depend on a specific vocabulary; it also enables a very effective
straightforward transfer learning procedure, which in addition eases training
on small datasets. Moreover, outputs are obtained in a completely end-to-end
fashion, in contrast to what happens for the chosen baseline word-based model,
whose performances are comparable or even worse.

One future improvement of our model could be the “reinforcement” of the
learning iteration described in section 2.3: for each dataset example (x, y), we
could consider, as an ulterior example, the reverse instance (y, x). The network
obtained this way should be completely reversible, and the interchangeability of
input and output languages could open up new opportunities in neural machine
translation, such as two-way neural translators.

New metrics that give greater importance to rare words might be needed in
the future, with the purpose of better assess performances of able-to-copy NLG
models on datasets such as the E2E+ one.
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