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Abstract. In programmatic advertising, ad slots are usually sold using
second-price (SP) auctions in real-time. The highest bidding advertiser
wins but pays only the second highest bid (known as the winning price).
In SP, for a single item, the dominant strategy of each bidder is to bid the
true value from the bidder’s perspective. However, in a practical setting,
with budget constraints, bidding the true value is a sub-optimal strategy.
Hence, to devise an optimal bidding strategy, it is of utmost importance
to learn the winning price distribution accurately. Moreover, a demand-
side platform (DSP), which bids on behalf of advertisers, observes the
winning price if it wins the auction. For losing auctions, DSPs can only
treat its bidding price as the lower bound for the unknown winning price.
In literature, typically censored regression is used to model such par-
tially observed data. A common assumption in censored regression is
that the winning price is drawn from a fixed variance (homoscedastic)
uni-modal distribution (most often Gaussian). However, in reality, these
assumptions are often violated. We relax these assumptions and propose
a heteroscedastic fully parametric censored regression approach, as well
as a mixture density censored network. Our approach not only general-
izes censored regression but also provides flexibility to model arbitrar-
ily distributed real-world data. Experimental evaluation on the publicly
available dataset for winning price estimation demonstrates the effective-
ness of our method. Furthermore, we evaluate our algorithm on one of
the largest demand-side platform and significant improvement has been
achieved in comparison with the baseline solutions.

Keywords: Computational Advertising · Real-time Bidding · Censored
Regression · Bid Landscape Forecasting

1 Introduction

Real-time Bidding (RTB) has become the dominant mechanism to sell ad slots
over the internet in recent times. In RTB, ad display opportunities are auctioned

? This work was conducted while the first author was doing an internship at Adobe
Research, USA
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when available from the publishers (sellers) to the advertisers (buyers). When a
user sees the ad that won the auction, it is counted as an ad impression. An RTB
ecosystem consists of supply-side platforms (SSP), demand-side platforms (DSP)
and an Ad Exchange. When a user visits a publisher’s page, the SSP sends a
request to the Ad Exchange for an ad display opportunity which is then rerouted
to DSPs in the form of a bid request. DSPs bid on behalf of the advertisers at
the Ad Exchange. The winner of the auction places the Ad on the publisher’s
site. Ad Exchanges usually employ second-price auction (SP) where the winning
DSP only has to pay the second highest bidding price [21]. Since this price is
the minimum bidding price DSP needs to win, it is known as the winning price.
When a DSP wins the auction, it knows the actual winning price. However, if
the DSP loses the auction, the Ad Exchange does not reveal the winning price.
In that case, the bidding price provides a lower bound on the winning price. This
mixture of observed and partially-observed (lower bound) data is known as right
censored data. The data to the right of the bidding price is not observed since it
is right censored.

For a single ad impression under the second price auction scheme, the domi-
nant strategy for an advertiser is to bid the true value of the ad. In this scenario,
knowing the bidding prices of other DSPs does not change a bidder’s strategy
[6]. However, in reality, DSPs have budget constraints with a utility goal (e.g.,
number of impressions, clicks, conversions). Under budget constraints, with re-
peated auctions, bidding the true value is no longer the dominant strategy [3].
In this setting, knowledge of the bidding prices of other bidders can allow one to
change the bid to improve its expected utility. DSP needs to estimate the cost
and utility of an auction to compute the optimal bidding strategy (or bidding
price) [23]. To compute the expected cost as well as the expected utility one
needs to know the winning price distribution. Therefore, modeling the winning
price distribution is an important problem for a DSP [12]. This problem is also
referred to as the Bid landscape forecasting problem.

Learning the bid landscape from a mix of observed and partially-observed
data poses a real challenge. It is not possible for DSPs to know the behavior of
the winning price beyond the maximum bidding price. Parametric approaches
often assume that the winning price follows some distribution. In the existing lit-
erature, Gaussian and Log-Normal distributions are often used for modeling the
winning price [20, 5]. However, these simple distributions do not always capture
all the complexities of real-world data. Moreover, for losing bids, the density of
winning price cannot be measured directly, and hence a standard log-likelihood
based estimate does not typically work on the censored data. In this scenario,
a common parametric method used is Censored Regression, which combines the
log density and the log probability for winning and losing auctions respectively
[20, 13]. Another common alternative is to use non-parametric survival based
methods using the Kaplan-Meier (KM) estimate for censored data [10]. To im-
prove the performance of the KM estimate, clustering the input is important.
Interestingly, in [18], the authors proposed to grow a decision tree based on
survival methods. In the absence of distributional assumptions, non-parametric
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methods (KM) work well. However, efficiently scaling non-parametric methods is
also challenging. On the other hand, parametric methods work on strong distri-
butional assumptions. When the assumptions are violated, inconsistency arises.
For a general discussion of the censored problem in machine learning, readers
are referred to [16].

Learning a distribution is generally more challenging than point estimation.
Thus, parametric approaches in previous research often considered point esti-
mation [20, 19]. However, to obtain an optimal bidding strategy, one needs the
distribution of the winning price. On the other hand, non-parametric approaches
like the KM method computes the distribution without any assumptions. How-
ever, these methods require clustering the data to improve the accuracy of the
model using some heuristics. Clustering based on feature attributes makes these
methods sub-optimal impacting generalization ability for dynamic real-world ad
data.

In this paper, we close the gap of violated assumptions in parametric ap-
proaches on censored data. Censored regression-based approaches assume a uni-
modal (often Gaussian) distribution on winning price. Additionally, it assumes
that the standard deviation of the Gaussian distribution is unknown but fixed.
However, in most real-world datasets these assumptions are often violated. For
example, in Figure 1, we present two winning price distributions (learned us-
ing the KM estimate) as well as fitted Gaussian distributions4 on two different
partitions of the iPinYou dataset [24]. It is evident from Figure 1 that the dis-
tributions are neither Gaussian (blue line) nor have fixed variance (red line). In
this paper, we relax each of these assumptions one by one and propose a gen-
eral framework to solve the problem of predicting the winning price distribution
using partially observed censored data. We first propose an additional parame-
terization which addresses the fixed variance assumption. Further, the Mixture
Density Network is known to approximate any continuous, differentiable func-
tion with enough hidden nodes [4]. We propose a Mixture Density Censored
Network to learn smooth winning price distribution using the censored data. We
refer to it as MCNet in the rest of the paper. Both of our proposed approaches
are generalizations of the Censored Regression.

Our main contributions are as follows. The typical deployed system uses Cen-
sored regression for point estimation of the winning price. However, we argue
that point estimation is not enough for an optimal bidding strategy. We improve
upon the parametric Censored Regression model to a general framework under
minimal assumptions. We pose Censored Regression as a solution to the win-
ning price distribution estimation problem (instead of a point estimate). To the
best of our knowledge, we are the first to apply the mixture density network on
censored data for learning the arbitrary distribution of the winning price. Our

4 We fit the unimodal Gaussian minimizing KL divergence with the estimated KM
distribution. We would like to point out, although in Figure 1(b) winning price
density is unimodal (within the limit), the probability of winning price beyond the
max bid price is high (0.61). Thus the fitted Gaussian has a mean of 350 and std
dev of 250 further from the peak at 75.
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Fig. 1: KM Estimate and Gaussian Fit on two clusters of Session-2 date 2013-
06-12 on iPinYou [24]

extensive experiments on a real-world public dataset show that our approach
vastly out-performs existing state-of-the-art approaches such as [20]. Evaluation
on the historical bid data from Adobe (DSP) shows the efficacy of our scal-
able solution. While we restricted the analysis to winning price distribution in
real-time bidding, MCNet is applicable to any partially observed censored data
problem.

2 Background & Related Work

In RTB, a DSP gets bid requests from the Ad exchange. We represent the ith

bid request by a feature vector xi, which captures all the characteristics of the
bid request. Most of the elements of xi’s are categorical (publisher verticals,
user’s device, etc.). If DSP wins the auction, it pays the second (winning) price.
Formally, the winning price is,

wi = max{bPub
i ,bDSP1

i ,bDSP2
i , · · · ,bDSPK

i }

where bPub
i is the floor price set by the publisher5 (often 0), and bDSP1

i , · · · ,bDSPK
i

are bidding prices from all other participating DSPs. We use bi to denote the
bidding price from the DSP of our interest. Here we provide an example to il-
lustrate the winning price (in SP auction). Suppose DSPs A, B, C bid $1, $2,
$3 respectively for a bid request. DSP C then wins the auction and pays the
second-highest price, i.e., $2. For DSP C, the winning price is $2 (observed). For
losing DSPs, A, and B, the winning price is $3 (which is unknown to them). In
this paper, we define the winning price from the perspective of a single DSP.

5 For simplicity, we view the floor price by the publisher as a bid from an additional
DSP.
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Learning the landscape of winning price accurately is important for an opti-
mal bidding strategy. A DSP is usually interested in some utility ui (e.g., clicks,
impressions, conversions) for each bid request xi and wants to maximize the over-
all utility using bidding strategy A and with budget B. This can be represented
by the following optimization problem, maxA

∑
i ui s.t.

∑
i costi ≤ B, where

costi is the price the DSP pays, if it wins the auction. Although the variables
are unknown beforehand, the expected cost and the utility can be computed
using the historical bid information. Thus the problem simplifies to,

max
A

∑
i

E[ui|xi,bi] s.t.
∑
i

E[costi|xi,bi] ≤ B (1)

Note that, the expected utility ui is conditioned on bid request xi and the
actual bid bi. For bid request xi, we represent the winning price distribution as
Pw(Wi|xi), and its cumulative distribution function (cdf) as Fw(Wi|xi). If the
DSP bids bi for xi, expected cost and expected utility (for SP auction) is,

E[costi|xi,bi] =

∫ bi

0

wPw(Wi = w|xi)dw, E[ui|xi,bi] = Fw(bi|xi)E[ui|xi]

An example of expected utility conditioned on bid request (E[ui|xi]) is Click-
through rate (CTR). CTR prediction is a well-studied problem in academia and
the industry [17]. We want to point out that the expected cost (E[costi|xi,bi])
is not the same as the expected winning price (E[Wi|xi]). The former is al-
ways lower than the latter and is equal only when bi → ∞ (i.e., when the
advertiser wins the auction with probability 1 and observe the winning price).
Thus predicting the winning price distribution instead of the point estimate is
important [15]. Further, for pacing the budget, one requires an estimate of win-
ning price distribution [2]. In [25], the authors proposed an unbiased learning
algorithm of click-through rate estimation using the winning price distribution.
Earlier parametric methods, considered point estimation of the winning price.
The censored regression-based approach assumes a standard unimodal distribu-
tion with a fixed but unknown variance to model the winning price [20, 26, 17].
In another paradigm, non-parametric methods such as the KM estimator has
been successful for modeling censored data [10, 18].

In the rest of the paper, we use P to denote probability density function
(pdf) and Pr to denote the usual probabilities. Next, we describe how Censored
Regression is applied to model the winning price.

2.1 Censored Regression

The data available to DSP is right censored by the Ad Exchange, i.e., for losing
bids only a lower bound (the bidding price) of the winning price is known.
However, a maximum likelihood estimator (MLE) can still work on the censored
data with some assumptions.

In [20], the authors assume that the winning price follows a normal distribu-
tion with fixed but unknown variance σ. The authors assume a linear relation-
ship between the mean of the normal distribution and the input feature vector.
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We use Wi to represent the random variable of winning price distribution of

ith bid request whereas wi is the realization of that. Thus wi = βTxi + εi
where εi are independent and identically distributed (i.i.d) from N (0, σ2) and
Wi ∼ N (βTxi, σ

2).

One can use any standard distribution in the censored regression approach.
In [19], the authors argue that maximal bidding price in the limit (of infinite
DSPs) resembles Gumbel distribution. However, for the generality of learning
from censored data, we do not constrain on any particular distribution in this
paper. Moreover, the linear link function can be replaced with any non-linear
function. Thus, wi can be parameterized as wi = f(β,xi) + εi where f can be
any continuous differentiable function. With the success of deep models, in [19],
the authors parameterize f(β,xi) with a deep network for additional flexibility.
Since we know the winning price for winning auctions, likelihood is simply the

probability density function (pdf) P (Wi = wi) = 1
σφ(wi−βTxi

σ ) where φ is the
pdf of standard normal N (0, 1). Note that, Wi is the random variable associated
with the winning price distribution whereas wi is the observed winning price.
For losing auctions, as we do not know the winning price, the pdf is unknown
to us. However, from the lower bound on the winning price, we can compute
the probability that bid bi will lose in the auction for bid request xi, under
the estimated distribution of Wi as Pr(Wi > bi) = Pr(εi < βTxi − bi) =

Φ(β
Txi−bi

σ ). Here Φ is the cdf for standard normal distribution. As discussed, φ
and Φ can be replaced with pdf and cdf of any other distribution (with different
parameterization).

Taking log of the density for winning auctions W and the log-probability for
losing auctions L, we get the following objective function [20],

β∗, σ∗ =arg max
β,σ>0

∑
i∈W

log

(
1

σ
φ(

wi − βTxi
σ

)

)
+
∑
i∈L

log

(
Φ(
βTxi − bi

σ
)

)
(2)

When the εi (noise in the winning price model) are i.i.d samples from a fixed
variance normal distribution, censored regression is an unbiased and consistent
estimator [9, 8].

3 Methodology

In this paper, we build on top of (Gaussian) censored regression-based approach
by relaxing some of the assumptions that do not hold in practice. First, we
relax the assumption of homoscedasticity, i.e., noise (or error) follows a normal
distribution with fixed but possibly unknown variance, by modeling it as a fully
parametric censored regression. Then we also relax the unimodality assumption
by proposing a mixture density censored network. We describe the details of our
approaches in the next two subsections.
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3.1 Fully Parametric Censored Regression

The censored regression approach assumes that the winning price is normally
distributed with a fixed standard deviation. As we discussed, in Figure 1, the
variance of the fitted Gaussian model is not fixed. If the noise ε is heteroscedas-
tic or not from a fixed variance normal distribution, the MLE is biased and
inconsistent. Using a single σ to model all bid requests, will not fully utilize the
predictive power of the censored regression model. Moreover, while the point es-
timate (mean) of the winning price is not dependent on the estimated variance,
the Bid landscape changes with σ. We remove the restriction of homoscedasticity
in the censored regression model and pose it as a solution to the distribution
learning problem.

Specifically, we assume the error term ε is coming from a parametric distri-
bution conditioned on the features. This solves the problem of error term coming
from fixed variance distribution. We assume the noise term εi is coming from
N (0, σ2

i ) where σi = exp(αTxi).

The likelihood for winning the auction is, P (Wi = wi) = 1
exp(αTxi)

φ( wi−βTxi

exp(αTxi)
)

where the predicted random variable Wi ∼ N (βTxi, exp(αTxi)
2) and φ is the

pdf of N (0, 1). In fully parametric censored regression, εi ∼ N (0, exp(αTxi)
2)

are not i.i.d samples. For losing bids, we can similarly compute the probability
based on the lower bound (bidding price bi)

Pr(Wi > bi) = P (εi < βTxi − bi) = Φ(
βTxi − bi
exp(αTxi)

)

Under the assumption of normal but varying variance on the noise, we can
still get a consistent and unbiased estimator by solving the following problem.

β∗, α∗ =arg max
β,α

∑
i∈W

log

(
1

exp(αTxi)
φ(

wi − βTxi
exp(αTxi)

)

)
+
∑
i∈L

log

(
Φ(
βTxi − bi
exp(αTxi)

)

)
(3)

3.2 Mixture Density Censored Network (MCNet)

In the previous subsection, we relaxed the fixed variance problem by using a
parametric σ. However, no standard distribution can model the multi-modality
that we observe in real-world data. For example, in Figure 1(b), we see mostly
unimodal behavior below the max bid price. However, the probability of losing an
auction is often high (61% in Figure 1(b)). Thus even with parametric standard
deviation, when we minimize the KL-divergence with a Gaussian, the mean
shifts towards the middle. Inspired by the Gaussian Mixture Model (GMM) [4]
we propose a Mixture Density Censored Network (MCNet). MCNet resembles
a Mixture Density Network while handling partially observed censored data for
learning arbitrary continuous distribution.
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In a GMM, the estimated random variable Wi consists of K Gaussian den-

sities and has the following pdf, P (Wi = wi) =
∑K
k=1

πk(xi)
σk(xi)

φ(wi−µk(xi)
σ2
k(xi)

). Here

πk(x), µk(x), σk(x) are the weight, mean and standard deviation for kth mixture
density respectively where k ∈ {1, · · · ,K}. To model the censored regression
problem as a mixture model, a straightforward way is to formulate the mean
of the Gaussian distributions with a linear function. Furthermore, to impose
positivity of σ, we model the logarithm of the standard deviation as a linear
function. We impose a similar positivity constraint on the weight parameters.
The parameters of the mixture model are (for k ∈ {1, · · · ,K}),

µk(xi) = βTµ,kxi, σk(xi) = exp(βTσ,kxi), πk(xi) =
exp(βTπ,kxi)∑K
j=1 exp(βTπ,jxi)

We can further generalize this mixture model and define a Mixture Density
Network (MDN) by parameterizing πk(xi), µk(xi), σk(xi) with a deep network.
In applications such as speech and image processing and astrophysics, MDNs
have been found useful [22, 14]. MDN can work with any reasonable choice of
base distribution.

MDN combines mixture models with neural networks. The output activation
layer, consists of 3K nodes (zi,k for i ∈ {µ, σ, π} and k ∈ {1, · · · ,K} ). We use
zµ,k, zσ,k, zπ,k to retrieve the mean, standard deviation and weight parameters
of kth density,

µk(xi) = zµ,k(x), σk(xi) = exp(zσ,k(x)), πk(xi) =
exp(zπ,k(xi))∑K
j=1 exp(zπ,j(xi))

(4)

MDN outputs conditional probabilities that are used for learning distribu-
tion from fully observed data [4]. For the censored problem, however, we only
observe partial data. We can now extend MDN to MCNet on censored data.
Instead of conditional output probabilities, MCNet outputs the probability of
losing in case auction is lost. Thus, we can compute the log-likelihood func-
tion on partially observed data. Taking the likelihood for winning auctions, the
corresponding negative log-likelihood for all the winning auctions is given by∑
i∈W − log(

∑K
k=1

πk(xi)
σk(xi)

φ(wi−µk(xi)
σk(xi)

)) where, φ is the pdf of N (0, 1). For los-

ing bids, we can similarly compute the probability of losing based on the lower

bound, Pr(Wi > bi) =
∑K
k=1 πk(xi)Φ(µk(xi)−bi

σk(xi)
)

Negative log-probability of all the losing auctions from the mixture density
is,

∑
i∈L
− log(

K∑
k=1

πk(xi)Φ(
µk(xi)− bi
σk(xi)

)) (5)

where, Φ represents the cdf of N (0, 1).
From Figure 1, recall that the distribution is not unimodal and has multiple

peaks. To address the multi-modality of the data we used a mixture of multiple
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densities. The embedded deep network in the MCNet (M) is trained to learn
the mean and standard deviation parameters of each of the constituents of the
mixture model as well as the corresponding weights. Combining all the auctions,
we get the following optimization function for censored data,

M∗ = arg max
M

∑
i∈L

log(

K∑
k=1

πk(xi)Φ(
µk(xi)− bi
σk(xi)

))

+
∑
i∈W

log(

K∑
k=1

πk(xi)

σk(xi)
φ(

wi − µk(xi)

σk(xi)
) (6)

where M is the neural network (parameters).

3.3 Optimization

It is easy to compute gradients of Eq. 2, 3, 6 with respect to all the parameters.
We used Adam optimizer for stochastic gradient optimization [11].

4 Experimental Results

In this section, we discuss experimental settings, evaluation measures, and re-
sults.

4.1 Experimental Settings

Datasets: We ran experiments on the publicly available iPinYou dataset [24]
as well as on a proprietary dataset collected from Adobe Adcloud (a DSP). The
iPinYou dataset contains censored winning price information. Further experi-
mentation was done on a sampled week’s data from Adobe Adcloud. iPinYou
data is grouped into two subsets: session 2 (dates from 2013-06-06 to 2013-06-
12), and session 3 (2013-10-19 to 2013-10-27). We experimented with the indi-
vidual dates within sessions as well. For all the datasets, we allocated 60% for
training, 20% for validation and rest 20% for testing. We report the average as
well as the standard deviation over five iterations. Similar to previous research
on the iPinYou dataset, we remove fields that are not directly related to the
winning price at the onset [20, 18]. The fields used in our methods are User-
Agent, Region, City, AdExchange, Domain, AdSlotId, SlotWidth, SlotHeight,
SlotVisibility, SlotFormat, Usertag. Every categorical feature (e.g City), is one-
hot encoded, whereas every numerical feature (e.g Ad height) is categorized into
bins and subsequently represented as one-hot encoded vectors. This way, each
bid request is represented as a high-dimensional sparse vector. Table 1 shows
the statistics of sessions in the iPinYou datasets. The number of samples and
win rates for individual dates are mentioned in Table. 2.



10 A. Ghosh et al.

Table 1: Basic statistics of iPinYou Sessions
Session sample feature win rate (%)

2 53,289,330 40,664 22.87
3 10,566,743 25,020 29.64

Evaluation Settings: Evaluation on partially observed data is difficult when
the winning price is unknown especially for point estimation. In [20], the authors
simulated new synthetic data from the original winning auctions. While the
added censoring allows validating point estimate, it does not use the whole data
(or the true distribution). We evaluate the performance of predicting the winning
price distribution rather than the point estimate itself. Thus we use the whole
data without generating simulated censoring behavior. This setting is similar
to earlier work on the survival tree-based method where the authors evaluated
predicting the distribution and used the original data [18].

Parametric methods: We compared the Censored Regression (CR) approach
with our methods: Fully parametric Censored Regression (P-CR) and Mixture
Density Censored Network (MCNet). For every method, we added an L2 reg-
ularization term for each weight vector to prevent over-fitting. For MCNet, we
added an additional hyper-parameter on the number of mixtures. We chose a
fully connected hidden layer with 64 nodes with RelU activation function as the
architecture. Our framework is general and can be extended to multiple layers.
The number of mixture components was varied from 2-4 for individual dates and
2-8 for the experiments on the two sessions. We used Adam optimizer with a
learning rate of 10−3. Mini-batch training was employed due to the high volume
of the data and we fixed the batch size to 1024 samples. We employed early
stopping on the training loss and do not observe the validation loss for early
stopping. This way, all the methods are treated similarly. The L2 regulariza-
tion was varied from 10−6 to 10 (in log scale). We implemented the parametric
methods in Tensorflow [1]. For the initialization of weight vectors, we sampled
randomly from the standard normal distribution in all our experiments.

Recently extending Censored Regression (CR), in [19], the authors proposed
to use deep model (DeepCR) to parameterize the mean to provide more flexibil-
ity in the point estimation. Additionally, the authors proposed to use Gumbel
distribution for point estimation. Note that, MCNet generalizes the DeepCR
model when using only one mixture component and Gumbel as the base distri-
bution. We did not see much improvement when using Gumbel to parameterize
mixture components with our initial experiments. With enough Gaussian mix-
ture components, MCNet can approximate any smooth distribution. As neural
architecture is not the primary motivation for this paper, we do not discuss
different architectures or distributions in this paper.

Non-parametric methods: To the best of our knowledge, parametric meth-
ods and non-parametric methods were not compared together for winning price
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distribution estimation in earlier research. We compared our approaches with
non-parametric approaches based on Kaplan-Meier (KM) estimate and the Sur-
vival tree (ST) method. The KM and ST based methods produce winning price
distributions until the maximum bid price since the winning price behavior above
that is unknown. To represent a complete landscape with the probability distri-
bution summing to one, we introduce an extra variable representing the event
that the winning price is beyond the maximum bid price. For the Survival tree,
we varied the tree height from 1-20.

In the ST method, the Survival tree is built by running an Expectation Maxi-
mization (EM) algorithm for each field to cluster similar attributes. If data has F
fields and the average number of attributes in each field is K, then for n samples,
the EM algorithm takes,O(FKln) steps to cluster features based on their density
for l iterations. With depth d, total complexity becomes O(FKlnd). Given this
runtime, we could not run ST using all attributes of Domain, SlotId fields (these
fields were removed in previous research [18]). We trimmed the Domain and
SlotId features by combining the attributes that appeared less than 103 times.
We created “other domains” and “other slot ids” bins for these less frequent at-
tributes. This improved the time complexity and made the method viable. But
for the CR-based methods, we could easily relax this threshold and trimmed both
the features where the attributes appeared less than 10 times in the dataset in
either session. For a fair comparison, whenever we use the same feature trim-
ming in the parametric methods as ST, we denote using CR∗,P-CR∗,MCNet∗.
Note that parametric methods can scale easily whereas the non-parametric ST
method cannot.

RS CR∗ CR P-CR∗ P-CR MCNet∗MCNet KM ST∗
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Fig. 2: iPinYou session’s ANLP . Error bar represents the standard deviation.

Baseline Method: We also propose a simple baseline method and compare
it with other methods. The baseline algorithm picks a winning price randomly
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conditioned on the win rate. We denote this as the Random Strategy (RS).
Formally, let the maximum bid price be z and probability of a win be p. Then,
the probability that the winning price is w is given by

P (W = w) =
p

z
if w ∈ [0, z], and 0 if w < 0 and

∫ ∞
z

Pr(W = w)dw = 1− p

Thus with probability 1 − p, it predicts the event that winning price is greater
than max bid price and with probability p it draws from U(0, z) where U is the
Uniform distribution.

4.2 Evaluation Measure

Our objective is to learn the distribution of the winning price, rather than the
point estimate. Hence, we choose Average Negative Log Probability (ANLP ) as
our evaluation measure similar to [18]. ANLP is defined as,

ANLP =− 1

N

(∑
i∈W

log Pr(Wi = wi) +
∑
i∈L

log Pr(Wi ≥ bi)
)

where W represents the set of winning auctions, wi represents winning price of

the ith winning auction, L is the set of losing auctions, bi is the bidding price

for the ith losing auction, and |W|+ |L| = N .
Note that, we computed pdf for winning auctions and probability (or the

CDF) for losing auctions while optimizing. While the CDF represents the prob-
ability of the event, density does not represent probability. Additionally, bid
prices are an integer. The KM method estimates the probability on those dis-
crete points. However, parametric approaches estimate a continuous random
variable whose probability at any discrete point is 0. To treat losing bids and
winning bids similarly in evaluation, we use quantization trick on the continu-
ous random variable [7]. For the parametric approaches, the estimate Wi is a
continuous random variable. We discretized the random variable Wi as follows,

Wbin
i = l, if Wi ∈ (l − 0.5, l + 0.5] where l is an integer. Thus, for winning

auctions W with winning price wi, quantized probability is,

Pr(Wbin
i = wi) = Pr(Wi ≤ wi + 0.5)− Pr(Wi ≤ wi − 0.5)

For losing auctions L, the quantized probability is, Pr(Wbin
i ≥ bi) = Pr(Wi ≥

bi−0.5). Using quantization technique, winning bids and losing bids are treated
similarly for all methods.

4.3 Experimental Results

In this section, we discuss quantitative results on iPinYou sessions 2 and 3. In Ta-
ble 2, we provide average ANLP over different dates as well as the standard devi-
ation (std) numbers. In figure 2, we mention the result on each session as a whole.
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(b) Varying mixture components

Fig. 3: Hyper-parameter effect on ANLP

Moreover, we plot how number of mixture components as well as tree depth af-
fect the result for MCNet and ST respectively in Figure 3. In sessions 2 and 3
where we include all the dates, we also added the ST method for comparison.
As ST did not run with large feature space, we also added CR∗,P-CR∗,MCNet∗

for parity (where number of feature was small for all methods).

From Table 2, it is evident, P-CR improves upon CR on most dates (except
with low volume dates) asserting the violation of fixed standard deviation as-
sumption. While for P-CR, improvement is around 5%-10%, MCNet improves
CR by more than 30% on all dates. Improvement of MCNet re-verify our as-
sumption about the multi-modal nature of the winning price distribution. CR
performs better than both RS as well as KM. This is expected as the non-
parametric KM estimate does not use any features. However, KM improves RS
by around 10% on all dates. ST improves CR and P-CR significantly implying
the significance of non-parametric estimators.

In Figure 2, one can see similar trends over CR, P-CR, and MCNet. With
feature trimming, MCNet∗ performs similarly to ST methods. This is expected as
both ST and MCNet can predict arbitrary smooth distributions. Although, when
the MCNet approach is restricted to fewer features (MCNet∗) on the average it
performs similarly to ST, the benefits of parametric methods come from the fact
that parametric approaches are scalable to large feature as well as input space.
It may be observed that the performance of MCNet improves ST by more than
10% on both sessions. While we used only one hidden layer for MCNet, any deep
network can be used to parameterize the mixture density network for potentially
improving the MCNet results even further.

In Figure 3(a), we plot ANLP for different depths of the decision trees. It can
be observed that for ST, the performance saturates around depth 15. In Figure
3(b), we also show how the varying number of mixture components impacts
ANLP . On the larger dataset of Session 2, ANLP stabilizes to a low value at 4
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Table 2: ANLP on Session 2 and 3 individual dates. We report std only if it is
higher than 0.01

Date ≈n(×106) wr(%) RS CR p-CR MCNet KM ST

2013-06-06 9.58 18.93 1.55 1.212 1.081 0.756 1.403 0.956
2013-06-07 11.13 16.16 1.35 1.036 0.913 0.641 ± 0.02 1.211 0.823
2013-06-08 5.22 31.17 2.37 1.946 1.695 1.311 ± 0.02 2.131 1.527
2013-06-09 11.88 13.85 1.17 0.887 0.784 0.574 ± 0.03 1.071 0.710
2013-06-10 5.61 34.06 2.55 2.130 1.809 1.252 ± 0.06 2.234 1.502
2013-06-11 5.09 34.13 2.56 2.128 1.810 1.351 2.248 1.552
2013-06-12 4.75 34.68 2.59 2.189 1.914 1.364 ± 0.04 2.273 1.572

2013-10-19 0.35 64.58 4.31 4.135 4.285 ± 0.08 2.791 ± 0.05 3.659 3.056 ± 0.02
2013-10-20 0.32 65.48 4.33 4.167 4.287 ± 0.15 2.768 ± 0.1 3.737 3.159
2013-10-21 1.54 54.59 3.77 3.466 3.515 2.338 ± 0.03 3.272 2.529
2013-10-22 1.21 56.00 3.85 3.641 3.569 2.576 ± 0.03 3.428 2.779
2013-10-23 1.57 14.30 1.22 1.060 1.033 0.854 ± 0.02 1.157 0.963
2013-10-24 2.18 11.23 0.985 0.831 0.824 0.618 0.904 0.698 ± 0.01
2013-10-25 2.23 14.23 1.21 1.015 0.998 0.771 ± 0.03 1.131 0.888
2013-10-26 0.53 49.90 3.51 3.432 3.433 ± 0.01 2.577 ± 0.09 3.228 2.931 ± 0.01
2013-10-27 0.59 18.45 1.53 1.367 1.361 0.937 ± 0.03 1.348 1.104 ± 0.02

Table 3: ANLP on Adobe AdCloud Dataset
CR P-CR MCNet KM ST

ANLP 0.4744 ± 0.01 0.4722 ± 0.01 0.3477 ± 0.01 0.4671 ± 0.01 0.4213 ± 0.02

mixture components. However, for session 3, ANLP starts increasing beyond 6
mixture components, implying over-fitting.

Results on Adobe AdCloud Dataset: We also tested our methods on Adobe
Advertising Cloud (DSP) offline dataset. We collected a fraction of logs for one
week. The number of samples was 31, 772, 122 and the number of features was
33, 492. It had similar categorical as well as real-valued features. We use the same
featurization framework and represented each bid request with a sparse vector.
In Table 3, we report the ANLP results, using the same experimental setup.
Note that, MCNet improves CR by 25% while it improves ST by more than 10%.
In this dataset, we do see only marginal improvement over using P-CR.

5 Discussion & Future Work

In this paper, we particularly focus on one of the central problems in RTB, the
winning price distribution estimation. In practice, DSP depends on the estimated
bid landscape to optimize it’s bidding strategy. From a revenue perspective, an
accurate bid landscape is of utmost importance. While, non-parametric methods
can estimate arbitrary distributions, in practice, it is challenging to scale on large
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datasets. On the other hand, widely used parametric methods, such as Censored
Regression in its original form is highly restrictive. We proposed a novel method
based on Mixture Density Networks to form a generic framework for estimating
arbitrary distribution under censored data. MCNet generalizes a fully paramet-
ric Censored regression approach with the number of mixture components set to
one. Additionally, Censored regression is a special case of fully parametric cen-
sored regression where the standard deviation is fixed. We provided extensive
empirical evidence on public datasets and data from a leading DSP to prove the
efficacy of our methods. While the mixture of (enough) Gaussian densities can
approximate any smooth distribution, further study is needed on the choice of
base distribution. A more subtle point arises when learning with censored data as
we do not observe any winning price beyond the maximum bidding price. With-
out any assumptions on the distribution, it is not provably possible to predict
the behavior in the censored region. Non-parametric methods only learn den-
sity within the limit of maximum bidding price while under strong assumptions
of standard distributions, censored regression predicts the behavior of winning
price in the censored region. Although MCNet can approximate any smooth
distribution, beyond the maximum bidding price, it leads to non-identifiability
similar to the KM estimate. It would be interesting to explore combining MCNet
with distributional assumptions where the winning price is never observed.
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