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Abstract. Confounding bias, missing data, and selection bias are three
common obstacles to valid causal inference in the data sciences. Covariate
adjustment is the most pervasive technique for recovering casual effects
from confounding bias. In this paper we introduce a covariate adjustment
formulation for controlling confounding bias in the presence of missing-
not-at-random data and develop a necessary and sufficient condition
for recovering causal effects using the adjustment. We also introduce an
adjustment formulation for controlling both confounding and selection
biases in the presence of missing data and develop a necessary and
sufficient condition for valid adjustment. Furthermore, we present an
algorithm that lists all valid adjustment sets and an algorithm that finds
a valid adjustment set containing the minimum number of variables,
which are useful for researchers interested in selecting adjustment sets
with desired properties.

Keywords: missing data · missing not at random · causal effect · ad-
justment · selection bias.

1 Introduction

Discovering causal relationships from observational data has been an important
task in empirical sciences, for example, assessing the effect of a drug on curing
diabetes, a fertilizer on growing agricultural products, and an advertisement on
the success of a political party. One major challenge to estimating the effect
of a treatment on an outcome from observational data is the existence of con-
founding bias - i.e., the lack of control on the effect of spurious variables on
the outcome. This issue is formally addressed as the identifiability problem in
[13], which concerns with computing the effect of a set of treatment variables
(X) on a set of outcome variables (Y), denoted by P (y | do(x)), given observed
probability distribution P (V) and a causal graph G, where P (V) corresponds
to the observational data and G is a directed acyclic graph (DAG) representing
qualitative causal relationship assumptions between variables in the domain. The
effect P (y | do(x)) may not be equal to its probabilistic counterpart P (y | x) due
to the existence of variables, called covariates, that affect both the treatments
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and outcomes, and the difference is known as confounding bias. For example,
Fig. 1(a) shows a causal graph where variable Z is a covariate for estimating the
effect of X on Y .

Confounding bias problem has been studied extensively in the field. In principle
the identifiability problem can be solved using a set of causal inference rules called
do-calculus [12], and complete identification algorithms have been developed [23,
5, 19]. In practice, however, the most widely used method for controlling the
confounding bias is the “adjustment formula” P (y | do(x)) =

∑
z P (y | x,Z =

z)P (Z = z), which dictates that the causal effect P (y | do(x)) can be computed
by controlling for a set of covariates Z. Pearl provided a back-door criterion
under which a set Z makes the adjustment formula hold [12].
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Fig. 1: Examples for confounding bias and MNAR

Another major challenge to valid causal inference is the missing data problem,
which occurs when some variable values are missing from observed data. Missing
data is a common problem in empirical sciences. Indeed there is a large literature
on dealing with missing data in diverse disciplines including statistics, economics,
social sciences, and machine learning. To analyze data with missing values, it is
imperative to understand the mechanisms that lead to missing data. The seminal
work by Rubin [15] classifies missing data mechanisms into three categories:
missing completely at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). Roughly speaking, the mechanism is MCAR if whether
variable values are missing is completely independent of the values of variables
in the data set; the mechanism is MAR when missingness is independent of the
missing values given the observed values; and the mechanism is MNAR if it is
neither MCAR nor MAR. For example, assume that in a study of the effect of
family income (FI) and parent’s education level (PE) on the quality of child’s
education (CE), some respondents chose not to reveal their child’s education
quality for various reasons. Fig. 2 shows causal graphs representing the three
missing data mechanisms where RCE is an indicator variable such that RCE = 0
if the CE value is missing and RCE = 1 otherwise. In these graphs solid circles
represent always-observed variables and hollow circles represent variables that
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could have missing values. The model in Fig. 2(a) is MCAR, e.g., respondents
decide to reveal the child’s education quality based on coin-flips. The model in
Fig. 2(b) is MAR, where respondents with higher family income have a higher
chance of revealing the child’s education quality; however whether the CE values
are missing is independent of the actual values of CE given the FI value. The
model in Fig. 2(c) is MNAR, where respondents with higher child’s education
quality have a higher chance of revealing it, i.e., whether the CE values are
missing depends on the actual values of CE.
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Fig. 2: Three types of missing data mechanisms

It is known that when the data is MAR, the underlying distribution is
estimable from observed data with missing values. Then a causal effect is estimable
if it is identifiable from the observed distribution [10]. However, if the data is
MNAR, whether a probabilistic distribution or a causal effect is estimable from
missing data depends closely on both the query and the exact missing data
mechanisms. For example, in the MNAR model in Fig. 1(b), P (X) cannot
be estimated consistently even if infinite amount of data are collected, while
P (y|do(x)) = P (y|x) = P (y|x,RX = 1) is estimable from missing data. On the
other hand, in the MNAR model in Fig. 1(c), P (y|do(x)) is not estimable. In the
MNAR model in Fig. 2(c), neither P (CE) nor P (CE | do(FI)) can be estimated
from observed data with missing values.

Various techniques have been developed to deal with missing data in statistical
inference, e.g., listwise deletion [7], which requires data to be MCAR to obtain
unbiased estimates, and multiple imputation [16], which requires MAR. Most
of the work in machine learning makes MAR assumption and use maximum
likelihood based methods (e.g. EM algorithms) [6] , with a few work explicitly
incorporates missing data mechanism into the model [6, 9, 8].

The use of graphical models called m-graphs for inference with missing
data was more recent [11]. M-graphs provide a general framework for inference
with arbitrary types of missing data mechanisms including MNAR. Sufficient
conditions for determining whether probabilistic queries (e.g., P (y | x) or P (x,y))
are estimable from missing data are provided in [11, 10]. General algorithms for
identifying the joint distribution have been developed in [18, 22].
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The problem of identifying causal effects P (y | do(x)) from missing data in
the causal graphical model settings has not been well studied. To the best of our
knowledge the only results are the sufficient conditions given in [10]. The goal of
this paper is to provide general conditions under which the causal effects can be
identified from missing data using the covariate adjustment formula – the most
pervasive method in practice for causal effect estimation under confounding bias.

We will also extend our results to cope with another common obstacles to valid
causal inference - selection bias. Selection bias may happen due to preferential
exclusion of part of the population from sampling. To illustrate, consider a study
of the effect of diet on blood sugar. If individuals that are healthy and consume
less sugar than average population are less likely to participate in the study, then
the data gathered is not a faithful representation of the population and biased
results will be produced. This bias cannot be removed by sampling more examples
or controlling for confounding bias. Note that, in some sense, selection bias could
be considered as a very special case of missing data mechanisms, where values of
all of the variables are either all observed or all missing simultaneously. Missing
data problem allows much richer missingness patterns such that in any particular
observation, some of the variables could be observed and others could be missing.
Missing data is modeled by introducing individual missingness indicators for each
variable (such that RX = 0 if X value is missing), while selection bias is typically
modeled by introducing a single selection indicator variable (S) representing
whether a unit is included in the sample or not (that is, if S = 0 then values of
all variables are missing).

Identifying causal effects from selection bias has been studied in the literature
[2, 1]. Adjustment formulas for recovering causal effects under selection bias
have been introduced and complete graphical criteria have been developed [3,
4]. However these results are not applicable to the missing data problems which
have much richer missingness patterns than could be modeled by selection bias.
To the best of our knowledge, using adjustment for causal effect identification
when the observed data suffers from missing values or both selection bias and
missing values has not been studied in the causal graphical model settings. In
this paper we will provide a characterization for these tasks.

Specifically, the contributions of this paper are:

1. We introduce a covariate adjustment formulation for recovering causal effects
from missing data, and provide a necessary and sufficient graphical condition
for when a set of covariates are valid for adjustment.

2. We introduce a covariate adjustment formulation for causal effects identifi-
cation when the observed data suffer from both selection bias and missing
values, and provide a necessary and sufficient graphical condition for the
validity of a set of covariates for adjustment.

3. We develop an algorithm that lists all valid adjustment sets in polynomial
delay time, and an algorithm that finds a valid adjustment set containing
the minimum number of variables. The algorithms are useful for scientists to
select adjustment sets with desired properties (e.g. low measurement cost).

The proofs are presented in the Appendix in [17] due to the space constraints.
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2 Definitions and Related Work

Each variable will be represented with a capital letter (X) and its realized value
with the small letter (x). We will use bold letters (X) to denote sets of variables.

Structural Causal Models. The systematic analysis of confounding bias, miss-
ing data mechanisms, and selection bias requires a formal language where the
characterization of the underlying data-generating model can be encoded explic-
itly. We use the language of Structural Causal Models (SCM) [13]. In SCMs,
performing an action/intervention of setting X=x is represented through the
do-operator, do(X=x), which induces an experimental distribution P (y|do(x)),
known as the causal effect of X on Y. We will use do-calculus to derive causal
expressions from other causal quantities. For a detailed discussion of SCMs and
do-calculus, we refer readers to [13].

Each SCM M has a causal graph G associated to it, with directed arrows
encoding direct causal relationships and dashed-bidirected arrows encoding the
existence of an unobserved common causes. We use typical graph-theoretic
terminology Pa(C), Ch(C), De(C), An(C) representing the union of C and re-
spectively the parents, children, descendants, and ancestors of C. We use GC1C2

to denote the graph resulting from deleting all incoming edges to C1 and all
outgoing edges from C2 in G. The expression (X ⊥⊥ Y | Z)G denotes that X is
d-separated from Y given Z in the corresponding causal graph G [13] (subscript
may be omitted).

Missing Data and M-graphs. To deal with missing data, we use m-graphs
introduced in [11] to represent both the data generation model and the missing
data mechanisms. M-graphs enhance the causal graph G by introducing a set R of
binary missingness indicator variables. We will also partition the set of observable
variables V into Vo and Vm such that Vo is the set of variables that will be
observed in all data cases and Vm is the set of variables that are missing in some
data cases and observed in other cases. Every variable Vi ∈ Vm is associated
with a variable RVi

∈ R such that, in any observed data case, RVi
= 0 if the

value of corresponding Vi is missing and RVi = 1 if Vi is observed. We assume
that R variables may not be parents of variables in V, since R variables are
missingness indicator variables and we assume that the data generation process
over V variables does not depend on the missingness mechanisms. For any set
C ⊆ Vm, let RC represent the set of R variables corresponding to variables in
C. See Fig. 2 for examples of m-graphs, in which we use solid circles to represent
always observed variables in Vo and R, and hollow circles to represent partially
observed variables in Vm.

Causal Effect Identification by Adjustment. Covariate adjustment is the
most widely used technique for identifying causal effects from observational data.
Formally,
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Definition 1 (Adjustment Formula [13]). Given a causal graph G over a
set of variables V, a set Z is called covariate adjustment (or adjustment for
short) for estimating the causal effect of X on Y, if, for any distribution P (V)
compatible with G, it holds that

P (y | do(x)) =
∑
z

P (y | x, z)P (z). (1)

Pearl developed the celebrated “Backdoor Criterion” to determine whether a set
is admissible for adjustment [12] given in the following:

Definition 2 (Backdoor Criterion). A set of variables Z satisfies the back-
door criterion relative to a pair of variables (X,Y) in a causal graph G if:

a) No node in Z is a descendant of X.
b) Z blocks every path between X and Y that contains an arrow into X.

Complete graphical conditions have been derived for determining whether a set
is admissible for adjustment [20, 24, 14] as follows.

Definition 3 (Proper Causal Path). A proper causal path from a node X ∈ X
to a node Y ∈ Y is a causal path (i.e., a directed path) which does not intersect
X except at the beginning of the path.

Definition 4 (Adjustment Criterion [20]). A set of variables Z satisfies the
adjustment criterion relative to a pair of variables (X,Y) in a causal graph G if:

a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper
causal path from X to Y.

b) All non-causal paths between X and Y in G are blocked by Z.

A set Z is an admissible adjustment for estimating the causal effect of X on Y
by the adjustment formula if and only if it satisfies the adjustment criterion.

3 Adjustment for Recovering Causal Effects from Missing
Data

In this section we address the task of recovering a causal effect P (y | do(x))
from missing data given a m-graph G over observed variables V = Vo ∪Vm and
missingness indicators R. The main difference with the well studied identifiability
problem [13], where we attempt to identify P (y | do(x)) from the joint distribution
P (V), lies in that, given data corrupted by missing values, P (V) itself may not
be recoverable. Instead, a distribution like P (Vo,Vm,R = 1) is assumed to be
estimable from observed data cases in which all variables in V are observed (i.e.,
complete data cases). In general, in the context of missing data, the probability
distributions in the form of P (Vo,W,RW = 1) for any W ⊆ Vm, called manifest
distributions, are assumed to be estimable from observed data cases in which all
variables in W are observed (values of variables in Vm \W are possibly missing).
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The problem of recovering probabilistic queries from the manifest distributions
has been studied in [11, 10, 18, 22].

We will extend the adjustment formula for identifying causal effects to the
context of missing data based on the following observation which is stated in
Theorem 1 in [11]:

Lemma 1 For any Wo,Zo ∈ Vo and Wm,Zm ∈ Vm, P (Wo,Wm | Zo,Zm,
RWm∪Zm = 1) is recoverable.

Formally, we introduce the adjustment formula for recovering causal effects
from missing data by extending Eq. (1) as follows.

Definition 5 (M-Adjustment Formula). Given a m-graph G over observed
variables V = Vo ∪Vm and missingness indicators R, a set Z ⊆ V is called
a m-adjustment (adjustment under missing data) set for estimating the causal
effect of X on Y, if, for every model compatible with G, it holds that

P (y | do(x)) =
∑
z

P (y | x, z,RW = 1)P (z | RW = 1), (2)

where W = Vm ∩ (X ∪Y ∪ Z).

In the above formulation, we allow that the treatments X, outcomes Y, and
covariates Z all could contain Vm variables that have missing values. Both terms
on the right-hand-side of Eq. (2) are recoverable based on Lemma 1. Therefore
the causal effect P (y | do(x)) is recoverable if it can be expressed in the form of
m-adjustment.

We look for conditions under which a set Z is admissible as m-adjustment.
Intuitively, we can start with the adjustment formula (1), consider an adjustment
set as a candidate m-adjustment set, and then check for needed conditional
independence relations. Based on this intuition, we obtain a straightforward
sufficient condition for a set Z to be a m-adjustment set as follows.

Proposition 1 A set Z is a m-adjustment set for estimating the causal effect
of X on Y if, letting W = Vm ∩ (X ∪Y ∪ Z),

a) Z satisfies the adjustment criterion (Def. 4),
b) RW is d-separated from Y given X, Z, i.e., (Y ⊥⊥ RW | X, Z), and
c) Z is d-separated from RW, i.e., (Z ⊥⊥ RW).

Proof. Condition (a) makes sure that the causal effect can be identified in terms
of the adjustment formula Eq. (1). Then given Conditions (b) and (c), Eq. (1) is
equal to Eq. (2).

However this straightforward criterion in Proposition 1 is not necessary. To
witness, consider the set {Vm1, Vm2} in Fig. 3 which satisfies the back-door
criterion but not the conditions in Proposition 1 because Vm2 is not d-separated
from R2. Still, it can be shown that {Vm1, Vm2} is a m-adjustment set (e.g. by
do-calculus derivation).

Next we introduce a complete criterion to determine whether a covariate
set is admissible as m-adjustment to recover causal effects from missing data,
extending the existing work on adjustment [20, 24, 3, 4, 14].



8 M. Saadati and J. Tian
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Fig. 3: In this m-graph Vm2 is not d-separated from R2. However, {Vm2, Vm1} is
an admissible m-adjustment set.

Definition 6 (M-Adjustment Criterion). Given a m-graph G over observed
variables V = Vo ∪ Vm and missingness indicators R, and disjoint sets of
variables X, Y, Z ⊆ V, letting W = Vm ∩ (X ∪ Y ∪ Z), Z satisfies the m-
adjustment criterion relative to the pair (X,Y) if

a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper
causal path from X to Y.

b) All non-causal paths between X and Y in G are blocked by Z and RW.
c) RW is d-separated from Y given X under the intervention of do(x), i.e.,

(Y ⊥⊥ RW | X)GX
.

d) Every X ∈ X is either a non-ancestor of RW or it is d-separated from Y in
GX , i.e., ∀X ∈ X ∩An(RW), (X ⊥⊥ Y)GX

.

Theorem 1 (M-Adjustment) A set Z is a m-adjustment set for recovering
causal effect of X on Y by the m-adjustment formula in Def. 5 if and only if it
satisfies the m-adjustment criterion in Def. 6.

Conditions (a) and (b) in Def. 6 echo the adjustment criterion in Def. 4, and
it can be shown that if Z satisfies the m-adjustment criterion then it satisfies
the adjustment criterion (using the fact that no variables in R can be parents of
variables in V). In other words, we only need to look for m-adjustment sets from
admissible adjustment sets.

As an example consider Fig. 3. Both {Vm1} and {Vm1, Vm2} satisfy the m-
adjustment criterion (and the adjustment criterion too). According to Theorem 1,
P (y | do(x)) can be recovered from missing data by m-adjustment as

P (y | do(x)) =
∑
vm1

p(y | x, vm1, R1 = 1)P (vm1 | R1 = 1), (3)

=
∑

vm1,vm2

P (y | x, vm1, vm2, R1 = 1, R2 = 1)P (vm1, vm2 | R1 = 1, R2 = 1). (4)

4 Listing M-Adjustment Sets

In the previous section we provided a criterion under which a set of variables
Z is an admissible m-adjustment set for recovering a causal effect. It is natural
to ask how to find an admissible set. In reality, it is common that more than
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one set of variables are admissible. In such situations it is possible that some
m-adjustment sets might be preferable over others based on various aspects such
as feasibility, difficulty, and cost of collecting variables. Next we first present an
algorithm that systematically lists all m-adjustment sets and then present an
algorithm that finds a minimum m-adjustment set. These algorithms provide
flexibility for researchers to choose their preferred adjustment set based on their
needs and assumptions.

4.1 Listing all admissible sets

It turns out in general there may exist exponential number of m-adjustment sets.
To illustrate, we look for possible m-adjustment sets in the m-graph in Fig. 4 for
recovering the causal effect P (y | do(x)) (this graph is adapted from a graph in
[4]). A valid m-adjustment set Z needs to close all the k non-causal paths from X
to Y . Z must contain at least one variable in {Vi1, Vi2, Vi3} for each i = 1, . . . , k.
Therefore, to close each path, there are 7 possible Z sets, and for k paths, we have
total 7k Z sets as potential m-adjustment sets. For each of them, Conditions (c)
and (d) in Def. 6 are satisfied because (R ⊥⊥ Y | X)GX

and X is not an ancestor of

any R variables. We obtain that there are at least 7k number of m-adjustment sets.

R11

....

Rk1

V1

X

V11 V12 V13

V21 V22 V23

Y

V2

V3

R13

....

Rk3

......

.

..
Vk1 Vk2 Vk3

Fig. 4: An example of exponential number of m-adjustment sets

The above example demonstrates that any algorithm that lists all m-adjustment
sets will be exponential time complexity. To deal with this issue, we will provide
an algorithm with polynomial delay complexity [21]. Polynomial delay algorithms
require polynomial time to generate the first output (or indicate failure) and the
time between any two consecutive outputs is polynomial as well.

To facilitate the construction of a listing algorithm, we introduce a graph
transformation called Proper Backdoor Graph originally introduced in [24].

Definition 7 (Proper Backdoor Graph [24]). Let G be a causal graph, and

X,Y be disjoint subsets of variables. The proper backdoor graph, denoted as Gpbd
X,Y,

is obtained from G by removing the first edge of every proper causal path from X
to Y.
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Next we present an alternative equivalent formulation of the m-adjustment
criterion in Def. 6 that will be useful in constructing a listing algorithm.

Definition 8 (M-Adjustment Criterion, Math. Version). Given a m-graph
G over observed variables V = Vo ∪ Vm and missingness indicators R, and
disjoint sets of variables X, Y, Z ⊆ V, letting W = Vm ∩ (X ∪ Y ∪ Z), Z
satisfies the m-adjustment criterion relative to the pair (X,Y) if

a) Z ∩Dpcp(X,Y) = φ

b) (Y ⊥⊥ X | Z,RW)Gpbd

X,Y

c) (Y ⊥⊥ RW | X)GX

d) ((X ∩An(RW)) ⊥⊥ Y)GX

where Dpcp(X,Y) = De((De(X)GX
\X) ∩An(Y)GX

).

In Definition 8, Dpcp(X,Y), originally introduced in [24], represents the set of
descendants of those variables in a proper causal path from X to Y.

Proposition 2 Definition 8 and Definition 6 are equivalent.

Finally to help understanding the logic of the listing algorithm we introduce
a definition originally introduced in [4]:

Definition 9 (Family of Separators [4]). For disjoint sets of variables X,
Y, E, and I ⊆ E, a family of separators is defined as follows:

ZG(X,Y)〈I,E〉 := {Z | (X ⊥⊥ Y | Z)G and I ⊆ Z ⊆ E}, (5)

which represents the set of all sets that d-separate X and Y and encompass all
variables in set I but do not have any variables outside E.

Algorithm 1 presents the function ListMAdj that lists all the m-adjustment
sets in a given m-graph G for recovering the causal effect of X on Y. We note that
the algorithm uses an external function FindSep described in [24] (not presented
in this paper). FindSep(G, X, Y, I, E) will return a set in ZG(X,Y)〈I,E〉 if such
a set exists; otherwise it returns ⊥ representing failure.

Function ListMAdj works by first excluding all variables lying in the proper
causal paths from consideration (Line 3) and then calling the function List-
SepConditions (Line 4) to return all the m-adjustment sets. The function of
ListSepConditions is summarized in the following proposition:

Proposition 3 (Correctness of ListSepCondition) Given a m-graph G and
sets of disjoint variables X, Y, E, and I ⊆ E, ListSepConditions lists all sets Z
such that:

Z ∈ {Z | (X ⊥⊥ Y | Z,RZ,RX∩Vm ,RY∩Vm)Gpbd

X,Y
& (Y ⊥⊥ RZ | X)GX

& ((X∩
An(RZ)) ⊥⊥ Y)GX

& I ⊆ Z ⊆ E} where RZ is a shorthand for RZ∩Vm
.
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Algorithm 1: Listing all the m-adjustment sets

1 Function ListMAdj (G,X,Y,Vo,Vm,R)

2 Gpbd
X,Y ← compute proper back-door graph G

3 E← (Vo ∪Vm ∪R) \ {X ∪Y ∪Dpcp(X,Y)}.
4 ListSepConditions(Gpbd

X,Y,X,Y,R,Vo,Vm, I = {RX∩Vm ∪RY∩Vm},E)

5 Function ListSepConditions (G,X,Y,R,Vo,Vm, I,E)
6 if (Y ⊥⊥ RI | X)G

X
and ((X ∩An(RI)) ⊥⊥ Y)GX

and

FindSep(G,X,Y, I,E) 6= ⊥ then
7 if I = E then
8 Output(I \R)
9 else

10 W ← arbitrary variable from E \ (I ∪R)
11 if W ∈ Vo then
12 ListSepConditions(G,X,Y,R,Vo,Vm, I ∪ {W},E)
13 ListSepConditions(G,X,Y,R,Vo,Vm, I ,E \ {W})
14 if W ∈ Vm and RW ∈ E then
15 ListSepConditions(G,X,Y,R,Vo,Vm, I ∪ {W,RW },E)
16 ListSepConditions(G,X,Y,R,Vo,Vm, I, E \ {W,RW })

ListSepConditions, by considering both including and not including each
variable, recursively generates all subsets of V and for each generated set examines
whether the conditions (b), (c), and (d) in Def. 8 hold or not. If those conditions
were satisfied, the algorithm will return that candidate set as a m-adjustment
set. ListSepConditions generates each potential set by taking advantage of back-
tracking algorithm and at each recursion for a variable W ∈ V examines two cases
of having W in candidate set or not. If W ∈ Vo, then the algorithm examines
having and not having this variable in the m-adjustment set and continues to
decide about the rest of the variables in next recursion. If W ∈ Vm, then the
algorithm includes both W and RW in the candidate m-adjustment set. Therefore,
the algorithm considers both cases of having W,RW and not having them in the
candidate set. ListSepConditions, at the beginning of each recursion (Line 7),
examines whether the candidate m-adjustment set so far satisfies the conditions
(b), (c), (d) in Def. 8 or not. If any of them is not satisfied, the recursion stops
for that candidate set. The function FindSep examines the existence of a set
containing all variables in I and not having any of V \E that d-separates X from
Y. If this set does not exist FindSep returns ⊥. ListSepConditions utilizes FindSep
in order to check the satisfaction of condition (b) in Def. 8 for the candidate
set. Since the graph G given to FindSep is a proper back-door graph, all paths
between X and Y in this graph is non-causal. Therefore, if a set separates X
and Y in Gpbd, this set blocks all non-causal paths from X to Y in G.

The following theorem states that ListMAdj lists all the m-adjustment sets
in a given m-graph G for recovering the causal effect of X on Y.
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Theorem 2 (Correctness of ListMAdj) Given a m-graph G and disjoint
sets of variables X and Y, ListMAdj returns all the sets that satisfy the m-
adjustment criterion relative to (X, Y).

The following results state that Algorithm 1 is polynomial delay.

Proposition 4 (Time Complexity of ListSepConditions) ListSepConditions
has a time complexity of O(n(n+m)) polynomial delay where n and m are the
number of variables and edges in the given graph G respectively.

Theorem 3 (Time Complexity of ListMAdj) ListMAdj returns all the m-
adjustment sets with O(n(n+m)) polynomial delay where n and m are the number
of variables and edges in the given graph G respectively.

4.2 Finding a Minimum M-Adjustment Set

The problem of finding a m-adjustment set with minimum number of variables is
important in practice. Using a small adjustment set can reduce the computational
time. The cost of measuring more variables might be another reason researchers
may be interested in finding a minimum adjustment set. Next we present an
algorithm that for a given graph G and disjoint sets X and Y returns a m-
adjustment set with the minimum number of variables.

Algorithm 2: Find minimum size m-adjustment set

1 Function FindMinAdjSet(G,X,Y,Vo,Vm,R)

2 G′← compute proper back-door graph Gpbd
X,Y

3 E← (Vo ∪Vm) \ {X ∪Y ∪Dpcp(X,Y)}.
4 E′← {E ∈ E | E ∈ Vo or E ∈ Vm and (RE ⊥⊥ Y | X)

G
′
X
}

5 E′′← {E ∈ E′ | E ∈ Vo or E ∈ Vm and (X ∩An(RE) ⊥⊥ Y)
G
′
X
}

6 W← 1 for all variables
7 I← empty set
8 N ← FindMinCostSep(G′, X, Y, I, E′′, W)
9 return N ∪ RN

Function FindMinAdjSet takes a m-graph G as input and returns a m-
adjustment set with minimum number of variables. The function works by
first removing all variables that violate Conditions (a), (c), and (d) in the
m-adjustment criterion Def. 8 in lines 2 to 5, and then calling an external
function FinMinCostSep given in [24] which returns a minimum weight separator.
FindMinAdjSet sets all the weights for each variable to be 1 to get a set with
minimum size.

Theorem 4 (Correctness of FindMinAdjSet) Given a m-graph G and dis-
joint sets of variables X, and Y, FindMinAdjSet returns a m-adjustment set
relative to (X, Y) with the minimum number of variables.
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X

Y

S

(a) Selection bias

X

Y

RX

S

(b) MNAR model with se-
lection bias

ID X RX Y S

1 1 1 0 1

2 0 1 1 1

3 NA NA NA 0

4 NA 0 1 1

5 NA NA NA 0

(c) An example data set
compatible with the model
in Fig. 5(b)

Fig. 5: Examples of selection bias and MNAR

Theorem 5 (Time Complexity of FindMinAdjSet) FindMinAdjSet has a
time complexity of O(n3).

5 Adjustment from both Selection Bias and Missing Data

In Sections 3 and 4 we have addressed the task of recovering causal effects by
adjustment from missing data. In practice another common issue that data
scientists face in estimating causal effects is selection bias. Selection bias can
be modeled by introducing a binary indicator variable S such that S = 1 if a
unit is included in the sample, and S = 0 otherwise [2]. Graphically selection
bias is modeled by a special hollow node S (drawn round with double border)
that is pointed to by every variable in V that affects the process by which an
unit is included in the data. In Fig. 5(a), for example, selection is affected by the
treatment variable X.

In the context of selection bias, the observed distribution is P (V | S = 1),
collected under seletion bias, instead of P (V). The goal of inference is to recover
the causal effect P (y | do(x)) from P (V | S = 1). The use of adjustment for
recovering causal effects in this setting has been studied and complete adjustment
conditions have been developed in [3, 4].

What if the observed data suffers from both selection bias and missing values?
In the model in Fig. 5(b), for example, whether a unit is included in the sample
depends on the value of the outcome Y . If a unit is included in the sample,
the values of treatment X could be missing depending on the actual X values.
Fig. 5(c) shows an example data set compatible with the model in Fig. 5(b)
illustrating the difference between selection bias and missing data. To the best of
our knowledge, causal inference under this setting has not been formally studied.

In this section, we will characterize the use of adjustment for causal effect
identification when the observed data suffers from both selection bias and missing
values. First we introduce an adjustment formula called MS-adjustment for
recovering causal effect under both missing data and selection bias. Then we
provide a complete condition under which a set Z is valid as MS-adjustment set.
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Definition 10 (MS-Adjustment Formula). Given a m-graph G over ob-
served variables V = Vo ∪Vm and missingness indicators R augmented with a
selection bias indicator S, a set Z ⊆ V is called a ms-adjustment (adjustment
under missing data and selection bias) set for estimating the causal effect of X
on Y, if for every model compatible with G it holds that

P (y | do(x)) =
∑
z

P (y | x, z,RW = 1, S = 1)P (z | RW = 1, S = 1), (6)

where W = Vm ∩ (X ∪Y ∪ Z).

Both terms on the right-hand-side of Eq. (6) are recoverable from selection biased
data in which all variables in X∪Y∪Z are observed. Therefore the causal effect
P (y | do(x)) is recoverable if it can be expressed in the form of ms-adjustment.

Next we provide a complete criterion to determine whether a set Z is an
admissible ms-adjustment.

Definition 11 (MS-Adjustment Criterion). Given a m-graph G over ob-
served variables V = Vo ∪Vm and missingness indicators R augmented with
a selection bias indicator S, and disjoint sets of variables X, Y, Z, letting
W = Vm ∩ (X ∪Y ∪ Z), Z satisfies the ms-adjustment criterion relative to the
pair (X,Y) if

a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper
causal path from X to Y.

b) All non-causal paths between X and Y in G are blocked by Z, RW, and S.
c) RW and S are d-separated from Y given X under the intervention of do(x).

i.e., (Y ⊥⊥ (RW ∪ S) | X)GX

d) Every X ∈ X is either a non-ancestor of {RW, S} or it is d-separated from
Y in GX . i.e., ∀X ∈ X ∩An(RW ∪ S), (X ⊥⊥ Y)GX

.

Theorem 6 (MS-Adjustment) A set Z is a ms-adjustment set for recovering
causal effect of X on Y by the ms-adjustment formula in Definition 10 if and
only if it satisfies the ms-adjustment criterion in Definition 11.

To demonstrate the application of Theorem 6, consider the causal graph in
Fig. 6 where V1 ,V5, Y may have missing values and the selection S depends
on the values of X2. To recover the causal effect of {X1, X2} on variable Y , V1
satisfies the ms-adjustment criterion. We obtain P (y | do(x1, x2)) =

∑
V1
P (y |

x1, x2, V1, S = 1, Ry = 1, R1 = 1)P (V1 | S = 1, Ry = 1, R1 = 1).
We note that the two algorithms given in Section 4, for listing all m-adjustment

sets and finding a minimum size m-adjustment set, can be extended to list all ms-
adjustment sets and find a minimum ms-adjustment set with minor modifications.

6 Conclusion

In this paper we introduce a m-adjustment formula for recovering causal effect
in the presence of MNAR data and provide a necessary and sufficient graph-
ical condition - m-adjustment criterion for when a set of covariates are valid
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X1

V1 V2

V3

V4

R1

V5

R5

Y

X2

S RY

Fig. 6: An example for recovering causal effect under both selection bias and
MNAR data

m-adjustment. We introduce a ms-adjustment formulation for causal effects iden-
tification in the presence of both selection bias and MNAR data and provide a
necessary and sufficient graphical condition - ms-adjustment criterion for when
a set of covariates are valid ms-adjustment. We develop an algorithm that lists
all valid m-adjustment or ms-adjustment sets in polynomial delay time, and
an algorithm that finds a valid m-adjustment or ms-adjustment set containing
the minimum number of variables. The algorithms are useful for data scientists
to select adjustment sets with desired properties (e.g. low measurement cost).
Adjustment is the most used tool for estimating causal effect in the data sciences.
The results in this paper should help to alleviate the problem of missing data
and selection bias in a broad range of data-intensive applications.
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