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Abstract. We introduce a new Large Margin Gaussian Process (LMGP)
model by formulating a pseudo-likelihood for a generalised multi-class
hinge loss. We derive a highly scalable training objective for the pro-
posed model using variational-inference and inducing point approxima-
tion. Additionally, we consider the joint learning of LMGP-DNN which
combines the proposed model with traditional Deep Learning methods to
enable learning for unstructured data. We demonstrate the effectiveness
of the Large Margin GP with respect to both training time and accuracy
in an extensive classification experiment consisting of 68 structured and
two unstructured data sets. Finally, we highlight the key capability and
usefulness of our model in yielding prediction uncertainty for classifica-
tion by demonstrating its effectiveness in the tasks of large-scale active
learning and detection of adversarial images.

1 Introduction

This work brings together the effectiveness of large margin classifiers with the
non-parametric expressiveness and principled handling of uncertainty offered by
Gaussian processes (GPs). Gaussian processes are highly expressive Bayesian
non-parametric models which have proven to be effective for prediction mod-
elling. One key aspect of Bayesian models which is often overlooked by traditional
approaches is the representation and propagation of uncertainty. In general, de-
cision makers are not solely interested in predictions but also in the confidence
about the predictions. An action might only be taken in the case when the model
in consideration is certain about its prediction. This is crucial for critical applica-
tions like medical diagnosis, security, and autonomous cars. Bayesian formalism
provides a principled way to obtain these uncertainties. Bayesian methods han-
dle all kinds of uncertainties in a model, be it in inference of parameters or for
obtaining the predictions. These methods are known to be effective for online
classification [18], active learning [29], global optimization of expensive black-
box functions [11], automated machine learning [32], and as recently noted, even
in machine learning security [30].

Classical Gaussian process classification models [36] are generalised versions
of linear logistic regression. These classifiers directly use a function modelled
as a Gaussian process with a logit link or probit function [27] for obtaining
the desired probabilities. Alternatively, margin classifiers like Support Vector
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Machines (SVMs) employ hinge loss for learning decision functions. Gaussian
process classifiers often perform similar to non-linear SVMs [16] but are preferred
by some practitioners due to added advantages like uncertainty representation
and automatic hyperparameter determination. Therefore, it is natural to look
for a probabilistic generalisation of the hinge loss that can benefit from the
numerous advantages of Bayesian modelling.

The contributions in this work are threefold. We derive a pseudo-likelihood
for a general multi-class hinge loss and propose a large margin Gaussian pro-
cess (LMPG). We provide a scalable learning scheme based on variational in-
ference [2, 34, 10] to train this model. Additionally, we propose a hybrid model
which combines deep learning components such as convolutional layers with the
LMGP which we refer to as LMGP-DNN. This allows to jointly learn the fea-
ture extractors as well as the classifier design such that it can be applied both
on structured and unstructured data. We compare the proposed LMGP on 68
structured data sets to a state-of-the-art binary Bayesian SVM with the one-
vs-rest approach and the scalable variational Gaussian process [10]. On average,
LMGP provides better prediction performance and needs up to an order of mag-
nitude less training time in comparison to the competitor methods. The proposed
LMGP-DNN is compared on the image classification data sets MNIST [17] and
CIFAR-10 [15] to a standard (non-Bayesian) neural network. We show that we
achieve similar performance, however, require increased training time. Finally,
we demonstrate the effectiveness of uncertainties in experiments on active learn-
ing and adversarial detection.

2 Related Work

Motivated by a probabilistic formulation of the generalised multi-class hinge
loss, this work derives and develops a scalable training paradigm for large mar-
gin Gaussian process based classification. In the vast related literature this is an
advancement on two fronts - first, a novel approach to Gaussian process based
classification and second, Bayesian formulation of margin classifiers, like SVMs.
We position our work with respect to both these directions of research. With ref-
erence to Gaussian process based classifiers, our work closely relates to scalable
variational Gaussian processes (SVGP) [10]. Infamous for the cubic dependency
of learning schemes with respect to number of data samples has, in the past,
limited the applicability of Gaussian process based models. However recent de-
velopments in sparse-approximation schemes [34, 31] have enabled learning of
GP-based models for large scale datasets. The two works, SVGP and LMGP
differ in their choice of objective functions. While SVGP utilises a variational
approximation of the cross-entropy between predicted probabilities and the tar-
get probabilities for learning, LMGP seeks to maximise the margin between GP
predictions. In both works, this is achieved with the use of variational inference
along with inducing point approximation which scales learning to large data sets.

The probabilistic formulation of Support Vector Machines has a long stand-
ing history. However, most work has been limited to the binary-classification case
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with extensions to multi-class being enabled with the one-vs-rest scheme. [33]
interprets SVM training as learning a maximum a posteriori solution of a model
with Gaussian process priors. In addition, works like [28] have investigated ex-
tensions that benefit SVMs with certain key aspects of Bayesian formalism like
model selection. For the task of binary classification, [24] make a key observa-
tion and reformulate the hinge loss in the linear SVM training objective to a
location-scale mixture of Gaussians. They derive a pseudo-likelihood by intro-
ducing local latent variables for each data point and subsequently marginalize
them out for predictions. A multi-class extension to this linear model has been
considered in [23] with learning enabled by an expectation-maximisation based
algorithm. A non-linear version of this setup is considered by [9] where the linear
decision function is modeled as a Gaussian process. They approximate the re-
sulting joint posterior using Markov chain Monte Carlo (MCMC) or expectation
conditional maximization (ECM). Furthermore, they scale the inference using
the fully independent training conditional approximation (FITC) [31]. The basic
assumption behind FITC is that the function values are conditionally indepen-
dent given the set of inducing points. Then, training the Gaussian process is no
longer cubically dependent on the number of training instances. Moreover, the
number of inducing points can be freely chosen. [20] extend the work of [24] by
applying a mean field variational approach to it. Most recently, [35] propose an
alternate variational objective and use coordinate ascent to maximize it. They
demonstrate improved performance over a classical SVM, competitor Bayesian
approaches, and Gaussian process-based classifiers. In the scope of this work, we
contrast performance with the one-vs-rest extension of [35] and call it Bayesian
SVM.

3 Large Margin Gaussian Process

This section details the proposed Large Margin Gaussian process (LMGP). We
begin with a discussion of the probabilistic formulation of the hinge loss for
the binary case and follow it by establishing a Bayesian interpretation of the
generalised non-linear multi-class case [5]. We then establish the complete model
formulation of LMGP and detail a variational-inference based scheme for scalable
learning. We conclude with a description of LMGP-DNN model that extends the
applicability of LMGP to image data.

3.1 Probabilistic Hinge Loss

For a binary classification task, a model trained with hinge loss seeks to learn
a decision boundary with maximum margin, i.e. the separation between the
decision boundary and the instances of the two classes. We represent the labeled
data for a binary classification task with N observations and M -dimensional
representation as D = {xn, yn}Nn=1, where xn ∈ RM and yn ∈ {−1, 1} represent
predictors and labels, respectively. Training such a model, as in the case of the
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classical SVM, involves learning a decision function f : RM → R that minimizes
the regularized hinge loss,

L (D, f, γ) =

N∑
n=1

max {1− ynf (xn) , 0}+ γR (f) . (1)

The regularizer R punishes the choice of more complex functions for f , and γ is
a hyperparameter that controls the impact of this regularization. A linear SVM
uses a linear decision function f(xn) = θTxn. Non-linear decision functions are
traditionally obtained by applying the kernel trick.

For the linear case, [24] show that minimizing Equation (1) is equivalent to
estimating the mode of a pseudo-posterior (maximum a posteriori estimate)

p (f |D) ∝ exp (−L (D, f, γ)) ∝
N∏
n=1

L (yn|xn, f) p (f) , (2)

derived for a particular choice of pseudo-likelihood factors L, defined by location-
scale mixtures of Gaussians. This is achieved by introducing local latent variables
λn such that for each instance,

L (yn|xn, f) =

∫ ∞
0

1√
2πλn

exp

(
−1

2

(1 + λn − ynf (xn))
2

λn

)
dλn . (3)

In their formulations, [24] and [9] consider γ as a model parameter and accord-
ingly develop inference schemes. Similar to [35], we treat γ as a hyperparameter
and drop it from the expressions of prior and posterior for notational conve-
nience. [9] extend this framework to enable learning of a non-linear decision
function f . Both [9] and [35] consider models where f(x) is sampled from a zero-
mean Gaussian process i.e. f ∼ N (0,KNN ), where f = [f(x1), . . . , f(xn)] is a
vector of function evaluations and KNN is the covariance function evaluated at
data points.

3.2 Generalised Multi-Class Hinge Loss

Modeling a multi-class task with SVM is typically achieved by decomposing
the task into multiple independent binary classification tasks. Although simple
and powerful, this framework cannot capture correlations between the different
classes since the modeled binary tasks are independent. As an alternate ap-
proach, numerous extensions based on generalised notion of margins have been
proposed in the literature [6]. One can view these different multi-class SVM loss
functions as a combination of margin functions for the different classes, a large
margin loss for binary problems, and an aggregation operator, combining the
various target margin violations into a single loss value. We consider the pop-
ular formulation of [5] which corresponds to combining relative margins with
the max-over-others operator. A multi-class classification task involves N ob-
servations with integral labels Y = {1, . . . , C}. A classifier for this task can be
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modeled as a combination of a decision function f : RM → RC and a decision
rule to compute the class labels,

ŷ (xn) = arg max
t∈Y

ft (xn) . (4)

[5] propose to minimize the following objective function for learning the decision
function f :

L (D, f, γ) =

N∑
n=1

max

{
1 + max

t6=yn,t∈Y
ft (xn)− fyn (xn) , 0

}
+ γR (f) , (5)

where again γ is a hyperparameter controlling the impact of the regularizer R.
With the prior associated to γR (f), maximizing the log of Equation (2)

corresponds to minimizing Equation (5) with respect to the parameters of f .
This correspondence requires the following equation to hold true for the data-
dependent factors of the pseudo-likelihood,

N∏
n=1

L (yn | xn, f) = exp

(
−2

N∑
n=1

max

{
1 + max

t6=yn,t∈Y
ft (xn)− fyn (xn) , 0

})
.

(6)
Analogously to [24], we show that L (yn | xn, f) admits a location-scale mixture
of Gaussians by introducing local latent variables λ = [λ1, . . . , λn]. This requires
the lemma established by [1].

Lemma 1. For any a, b > 0,∫ ∞
0

a√
2πλ

e−
1
2 (a2λ+b2λ−1)dλ = e−|ab| . (7)

Now, we prove following theorem.

Theorem 1. The pseudo-likelihood contribution from an observation yn can be
expressed as

L (yn | xn, f) =

∫ ∞
0

1√
2πλn

e
−1
2λn

(1+λn+maxt 6=yn,t∈Y ft(xn)−fyn (xn))
2

dλn (8)

Proof. Applying Lemma 1 while substituting a = 1 and b = 1+maxt6=yn,t∈Y ft (xn)−
fyn (xn), multiplying through by e−b, and using the identity max {b, 0} = 1

2 (|b|+ b),
we get, ∫ ∞

0

1√
2πλn

exp

(
−1

2

(b+ λn)
2

λn

)
dλn = e−2max{b,0} . (9)

3.3 Scalable Variational Inference for LMGP

We complete the model formulation by assuming that fj(x) is drawn from a
Gaussian process for each class, j, i.e. fj ∼ N (0,KNN ) and λ ∼ 1[0,∞)(λ).
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Inference in our model amounts to learning the joint posterior p(f ,λ|D), where
f = [f1, . . . , fC ]. However, computing the exact posterior is intractable. We use
variational inference (VI) combined with an inducing point approximation for
jointly learning the C GPs corresponding to each class. In VI, the exact posterior
over the set of model parameters θ is approximated by a variational distribution
q. The parameters of q are updated with the aim to reduce the dissimilarity
between the exact and approximate posteriors, as measured by the Kullback-
Leibler divergence. This is equivalent to maximizing the evidence lower bound
(ELBO) [12] with respect to parameters of q, where

ELBO = Eq(θ) [log p (y|θ)]−KL [q (θ) ||p (θ)] . (10)

Using this as objective function, we could potentially infer the posterior q(f ,λ).
However, inference and prediction using this full model involves inverting an
N ×N matrix. An operation of complexity O(N3) is impractical. Therefore, we
employ the sparse approximation proposed by [10]. We augment the model with
P � N inducing points which are shared across all GPs. Similar to [10], we
consider a GP prior for the inducing points, p(uj) = N (0,KPP ) and consider
the marginal

q(fj) =

∫
p(fj |uj)q(uj)duj (11)

with

p(fj |uj) = N
(
κu, K̃

)
. (12)

The approximate posterior q(u,λ) factorizes as

∏
j∈Y

q(uj)

N∏
n=1

q(λn) (13)

with

q(λn) = GIG(1/2, 1, αn), q(uj) = N (µj , Σj) . (14)

Here, κ = KNPK
−1
PP , K̃ = KNN −KNPκ

T and GIG is the generalized inverse
Gaussian. KPP is the kernel matrix resulting from evaluating the kernel function
between all inducing points. Analogously, we denote the cross-covariance between
data points and inducing points, or between all data points by KNP or KNN ,
respectively. The choice of variational approximations is inspired from the exact
conditional posterior computed by [9]. Using Jensen’s inequality, we derive the
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Fig. 1: LMGP-DNN for image classification.

final training objective,

Eq(u,λ) [log p (y|u,λ)]−KL [q (u,λ) ||p (u,λ)] (15)

≥Eq(u,λ)

[
Ep(f |u) [log p (y,λ|f)]

]
+ Eq(u)[log p (u)]− Eq(u,λ)[log q(u,λ)] (16)

=

N∑
n=1

(
− 1

2
√
αn

(
2K̃n,n +

(
1 + κn

(
µtn − µyn

))2
+ κnΣtnκ

ᵀ
n + κnΣynκ

ᵀ
n − αn

)

−κn
(
µtn − µyn

)
− 1

4
logαn − log

(
B 1

2
(
√
αn)
))

− 1

2

∑
j∈Y

(
− log |Σj |+ trace

(
K−1PPΣj

)
+ µᵀ

jK
−1
PPµj

)
= O (17)

where B 1
2

is the modified Bessel function [13], and tn = arg maxt∈Y,t6=yn ft (xn).
O is maximized using gradient-based optimization methods. We provide a de-
tailed derivation of the variational objective and its gradients in the appendix.

3.4 LMGP-DNN

Deep Neural Networks (DNNs) are well known for their end-to-end learning ca-
pabilities for numerous tasks that involve unstructured data. Their effectiveness
is often attributed to their capacity to learn hierarchical representation of data.
In Section 3.3 we show that our proposed LMGP can be learned with gradient-
based optimization schemes. This enables us to combine it with various deep
learning components such as convolutional layers and extend its applicability to
unstructured data as shown in Figure 1. The parameters of the LMGP-DNN
model which includes convolution and the variational parameters are jointly
learned by means of backpropagation. The ability to jointly learn features with
the one-vs-rest Bayesian SVMs has been previously explored in [26] and [25].
LMGP-DNN explores the same for the multi-class case.

4 Experimental Evaluation

In this section we conduct an extensive study of the LMGP model and analyze its
classification performance on structured and unstructured data. Additionally, we
analyze the quality of its uncertainty prediction in a large-scale active learning
experiment and for the challenging problem of adversarial image detection.
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Fig. 2: Pairwise comparison of the LMGP versus the Bayesian SVM and SVGP.
On average, LMGP provides better results.
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Table 1: Mean average rank across 68 data sets. The smaller, the better. Our
proposed LMGP is on average the most accurate prediction model.

Bayesian SVM LMGP SVGP

1.96 1.68 2.33

4.1 Classification

Our classification experiment is investigating two different types of data. In
the first part, we investigate the classification performance of the multi-class
Bayesian SVM on structured data against Bayesian state-of-the-art models. In
the second part, we compare the hybrid Bayesian SVM model against standard
convolutional neural networks for the task of image classification.

4.2 Structured Data Classification

We evaluate the proposed LMGP with respect to classification accuracy on the
Penn Machine Learning Benchmarks [22]. From this benchmark, we select all
multi-class classification data sets consisting of at least 128 instances. This subset
consists of 68 data sets with up to roughly one million instances. We compare the
classification accuracy of our proposed LMGP with the the scalable variational
Gaussian process (SVGP) [10] and the most recently proposed binary Bayesian
support vector machine (Bayesian SVM) [35] (one-vs-rest setup). We use the
implementation available in GPflow [21] for SVGP and implement the one-vs-
rest Bayesian SVM and LMGP as additional classifiers in GPflow by extending
its classifier interface. The shared back end of all three implementations allows a
fair training time comparison. For this experiment, all models are trained using
64 inducing points. Gradient-based optimization is performed using Adam [14]
with an initial learning rate of 5 · 10−4 for 1000 epochs.

Figure 2 contrasts the LMGP with SVGP and one-vs-rest Bayesian SVM. The
proposed LMGP clearly outperforms the other two models for most data sets.
While this is more pronounced against SVGP, the Bayesian SVM and LMGP
models exhibit similar performance. This claim is supported by the comparison
of mean ranks (Table 1). The rank per data set is computed by ranking the
methods for each data set according to classification accuracy. The most accurate
prediction model is assigned rank 1, second best rank 2 and so on. In case of
ties, an average rank is used, e.g. if the models exhibit classification accuracies
of 1.0, 1.0, and 0.8, they are assigned ranks of 1.5, 1.5, and 3, respectively.

One primary motivation for proposing LMGP is scalability. Classification
using the one-vs-rest Bayesian SVM requires training an independent model per
class which increases the training time by a factor equal to the number of classes.
Contrastingly, SVGP and LMGP enable multi-class classification with a single
model. This results in significant benefits in training time. As evident in Figure 3,
the LMGP requires the least training time.
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Fig. 3: Our proposed LMGP clearly needs less time than its competitors.
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Fig. 4: The jointly learned model of a convolutional network and an LMGP
performs as good as a standard network. The price of gaining a Bayesian neural
network is a longer training time.

In conclusion, LMGP is the most efficient model without compromising on
prediction accuracy. In fact, on average it has a higher accuracy.

4.3 Image Classification with LMGP-DNN

In Section 3.4 we describe how deep learning can be used to learn a feature
representation jointly with an LMGP. Image data serves as a typical example
for unstructured data. We compare the LMGP-DNN to a standard convolutional
neural network (CNN) with a softmax layer for classification. We evaluate these
models on two popular image classification benchmarks, MNIST [17] and CIFAR-
10 [15].

We observe same performance of the LMGP-DNN as a standard CNN with
softmax layer. The two different neural networks share the first set of layers, for
MNIST: conv(32,5,5)-conv(64,3,3)-max pool-fc(1024)-fc(100), and for
CIFAR-10: conv(128,3,3)-conv(128,3,3)-max pool-conv(128,3,3)

-max pool-fc(256)-fc(100). As in our previous experiment, we use Adam to
perform the optimization.
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Fig. 5: From top to bottom: 1. Data points belonging to three classes, 2. Predic-
tion probabilities from LMGP 3. Predictions from the three Gaussian processes
of the LMGP model along with their uncertainties, and 4. SVM probability
predictions

Figure 4 shows that the LMGP-DNN achieves the same test accuracy as
the standard CNN. The additional training effort of a LMGP-DNN model pays
off in achieving probabilistic predictions with uncertainty estimates. While the
variational objective and the likelihood exhibits the expected behavior during
the training, we note an odd behavior during the initial epochs. We suspect that
this is due to initialization of parameters which could result in the KL-term of
the variational objective dominating the expected log-likelihood.

4.4 Uncertainty Analysis

Most statistical modelling approaches are concerned with minimizing a specific
loss-metric, e.g. classification error. However, practitioners have additional con-
cerns, like interpretability and certainty of the predictions. Bayesian methods
provide a distribution over predictions rather than just point-estimates, which
is a significant advantage in practice as it allows for development of informed
decision-making systems. Figure 5 shows that LMGP exhibits a key artefact of
GPs where uncertainty in the predicted scores of GPs is higher (3rd row) in the
regions with few datapoints. This aspect of our model is central to its utility
in the tasks of active learning and adversarial detection and is often overlooked
by classical models like SVMs (4th row in Figure 5). We want to emphasise
that there are scenarios where uncertainty as obtained from Bayesian models is
beneficial and that the prediction error by itself only plays a tangential role.

Active Learning Active learning is concerned with scenarios where the process
of labeling data is expensive. In such scenarios, a query policy is adopted to label
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Fig. 6: The Bayesian query policy (variation ratio) decreases the error of the
model faster and clearly outperforms the policy based on point-estimates only.
For both figures, the smaller the better.

samples from a large pool of unlabeled instances with the aim to improve model
performance. We contrast between two policies to highlight the merits of using
prediction uncertainty obtained from the LMGP model. While the first policy
utilizes both mean and variance of the predictive distribution of the LMGP, the
second policy relies only on the mean. For this experiment we use the same data
sets as specified in Section 4.2.

We use the variation ratio (VR) as the basis of a Bayesian query policy. It is
defined by

Variation Ratio = 1− F/S , (18)

where F is the frequency of the mode and S the number of samples. The VR
is the relative number of times the majority class is not predicted. Its minimum
zero is reached when all Monte Carlo samples agree on the same class. The
instance with highest VR is queried. We compare this to a policy which queries
the instance with maximum entropy of class probabilities. These are computed
using softmax over the mean predictions,

H (f (xn)) = −
∑
t∈Y

ft (xn) log (ft (xn)) . (19)

For a fair comparison, we use the same LMGP for both policies. Initially, one
instance per class, selected uniformly at random, is labeled. Then, one hundred
further instances are queried according to the two policies. As only few training
examples are available, we modify the training setup by reducing the number of
inducing points to four.

We report the mean average rank across 68 data sets for the two different
query policies in Figure 6a. Since both policies start with the same set of labeled
instances, the performance is very similar at the beginning. However, with in-
creasing number of queried data points, the Bayesian policy quickly outperforms
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Fig. 7: The accuracy on adversarial images decreases with increasing attack
strength. A significant increase of the average variation ratio indicates that it is
a good feature to detect adversarial images.

the other policy. Of the 68 data sets, the poker data set, with more than one
million instances, is the largest and consequently the most challenging. Within
the first queries, we observe a large decrease in classification error as shown in
Figure 6b. We note the same trend of mean ranks across the two policies. The
small number of labeled instances is obviously insufficient to reach the test error
of a model trained on all data points as shown by the dashed line.

Similarly, one could employ LMGP-DNN for active learning of unstructured
data [7].

Adversarial Image Detection With the rise of Deep Learning, its security
and reliability is a major concern. A recent development in this direction is
the discovery of adversarial images [8]. These correspond to images obtained by
adding small imperceptible adversarial noise resulting in high confidence mis-
classification. While various successful attacks exist, most defense and detection
methods do not work [4]. However, [4] acknowledge that the uncertainty obtained
from Bayesian machine learning models is the most promising research direction.
Several studies show that Bayesian models behave differently for adversarial ex-
amples compared to the original data [3, 19, 30].We take a step further and use
the variation ratio (VR) determined by the LMGP, as defined in Equation (18),
for building a detection model for adversarial images.

We attack the LMGP-DNN described in Section 4.3 with the popular Fast
Gradient Sign Method (FGSM) [8]. We generate one adversarial image per image
in the test set. We present the results for detection and classification under attack
in Figure 7. LMGP-DNN is not robust to FGSM since its accuracy drops with
increasing attack strength ε. However, the attack does not remain unperceived.
The VR rapidly increases and enables the detection of adversarial images. The
ranking of original and adversarial examples with respect to VR yields an ROC-
AUC of almost 1 for MNIST. This means that the VR computed for any original
example is almost always smaller than the one computed for any adversarial
example.
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CIFAR-10 exhibits different results under the same setup. Here, the detection
is poor and it significantly worsens with increasing attack strength. Potentially,
this is an artifact of the poor classification model for CIFAR-10. In contrast to
the MNIST classifier, this model is under-confident on original examples. Thus,
a weaker attack succeeds in reducing the test accuracy to 1.16%. We believe a
better network architecture combined with techniques such as data augmentation
will lead to an improved performance in terms of test accuracy and subsequently
better detection. Nevertheless, the detection performance of our model is still
better than a random detector, even for the strongest attack.

5 Conclusions

We devise a pseudo-likelihood for the generalised multi-class hinge loss leading
to the large margin Gaussian process model. Additionally, we derive a variational
training objective for the proposed model and develop a scalable inference al-
gorithm to optimize it. We establish the efficacy of the model on multi-class
classification tasks with extensive experimentation on structured data and con-
trast its accuracy to two state-of-the-art competitor methods. We provide em-
pirical evidence that our proposed method is on average better and up to an
order of magnitude faster to train. Furthermore, we extend our formulation to a
LMGP-DNN and report comparable accuracy to standard models for image clas-
sification tasks. Finally, we investigate the key advantage of Bayesian modeling
in our approach by demonstrating the use of prediction uncertainty in solving
the challenging tasks of active learning and adversarial image detection. The
uncertainty-based policy outperforms its competitor in the active learning sce-
nario. Similarly, the uncertainty-enabled adversarial detection shows promising
results for image data sets with near-perfect performance on MNIST.
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